Subscribe to RSS
DOI: 10.1055/s-2007-1000366
Genomics and Proteomics in Venous Thromboembolism: Building a Bridge toward a Rational Personalized Medicine Framework
Publication History
Publication Date:
04 January 2008 (online)
ABSTRACT
Venous thromboembolism is a major health care problem worldwide and is sustained by a multifactorial pathogenesis where both congenital and acquired causes contribute. It is increasingly being highlighted that a reliable approach based on genomics and proteomics might be effective to construct a rational personalized medicine framework that can be applied in the preclinical, clinical, and therapeutic settings of venous thrombosis. The aim of this review is to provide a concise description of the current and future applications of genomics and proteomics in this challenging pathology.
KEYWORDS
Diagnosis - genomics - proteomics - therapy - venous thromboembolism
REFERENCES
- 1 Blann A D, Lip G Y. Venous thromboembolism. BMJ. 2006; 332 215-219
- 2 Weitz J I. Emerging themes in the treatment of venous thromboembolism. Thromb Haemost. 2006; 96 239-241
- 3 McPherson E. Genetic diagnosis and testing in clinical practice. Clin Med Res. 2006; 4 123-129
- 4 Tripodi A, Mannucci P M. Laboratory investigation of thrombophilia. Clin Chem. 2001; 47 1597-1606
- 5 Spencer F A, Becker R C. Diagnosis and management of inherited and acquired thrombophilias. J Thromb Thrombolysis. 1999; 7 91-104
- 6 Buchanan G S, Rodgers G M, Branch D W. The inherited thrombophilias: genetics, epidemiology, and laboratory evaluation. Best Pract Res Clin Obstet Gynaecol. 2003; 17 397-411
- 7 Samama M, Gerotziafas G, Conard J, Horellou M, Elalamy I. Clinical aspects and laboratory problems in hereditary thrombophilia. Haemostasis. 1999; 29 76-99
- 8 Crowther M A, Kelton J G. Congenital thrombophilic states associated with venous thrombosis: a qualitative overview and proposal classification system. Ann Intern Med. 2003; 138 128-134
- 9 Franchini M, Veneri D, Salvagno G L, Manzato F, Lippi G. Inherited thrombophilia. Crit Rev Clin Lab Sci. 2006; 43 249-290
- 10 Simioni P. The molecular genetics of familial venous thrombosis. Baillieres Best Pract Res Clin Haematol. 1999; 12 479-503
- 11 Franco R F, Reitsma P H. Genetic risk factors of venous thrombosis. Hum Genet. 2001; 109 369-384
- 12 Schwartz H P, Fischer M, Hopmeier P, Batard M A, Griffin J H. Plasma protein S deficiency in familial thrombotic disease. Blood. 1984; 64 1297-1300
- 13 Borgel D, Gandrille S, Aiach M. Protein S deficiency. Thromb Haemost. 1997; 78 351-356
- 14 Dahlback B, Hildebrand B. Inherited resistance to activated protein C is corrected by anticoagulant cofactor activity found to be a property of factor V. Proc Natl Acad Sci USA. 1994; 91 1396-1400
- 15 Bertina R M, Koeleman B P, Koster T et al.. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature. 1994; 369 64-67
- 16 Rodeghiero F, Tosetto A. Activated protein C resistance and factor V Leiden mutation are independent risk factors for venous thromboembolism. Ann Intern Med. 1999; 130 643-650
- 17 Poort S R, Rosendaal F R, Reitsma P H, Bertina R M. A common genetic variation in the 3′-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood. 1996; 88 3698-3703
- 18 Cattaneo M. Hyperhomocysteinemia, atherosclerosis and thrombosis. Thromb Haemost. 1999; 81 165-176
- 19 Arruda V R, von Zuben P M, Chiaparini L C, Annichino-Bizzacchi J M, Costa F F. The mutation Ala677 in the methylene tetrahydrofolate reductase gene: a risk factor for arterial disease and venous thrombosis. Thromb Haemost. 1997; 77 818-821
- 20 Robetorye R S, Rodgers G M. Update on selected inherited venous thrombotic disorders. Am J Hematol. 2001; 68 256-268
- 21 Kyrle P A, Minar E, Hirschl M et al.. High plasma levels of factor VIII end the risk of recurrent venous thrombembolism. N Engl J Med. 2000; 343 457-462
- 22 Koster T, Blann A D, Briet E, Vandenbroucke J P, Rosendaal F R. Role of clotting factor VIII in effect of von Willebrand factor on occurrence of deep-vein thrombosis. Lancet. 1995; 345 152-155
- 23 Kamphuisen P W, Houwing-Duistermaat J J, van Houwelingen H C et al.. Familial clustering of factor VIII and von Willebrand factor levels. Thromb Haemost. 1998; 79 323-327
- 24 Berger M, Mattheisen M, Kulle B et al.. High factor VIII levels in venous thromboembolism show linkage to imprinted loci on chromosomes 5 and 11. Blood. 2005; 105 638-644
- 25 Zidane M, de Visser M C, ten Wolde M et al.. Frequency of the TAFI -438 G/A and factor XIIIA Val34Leu polymorphisms in patients with objectively proven pulmonary embolism. Thromb Haemost. 2003; 90 439-445
- 26 Camilleri R S, Cohen H. No association between pulmonary embolism or deep vein thrombosis and the -455G/A beta-fibrinogen gene polymorphism. Blood Coagul Fibrinolysis. 2005; 16 193-198
- 27 Carter A M, Catto A J, Kohler H P et al.. Alpha-fibrinogen Thr312Ala polymorphism and venous thromboembolism. Blood. 2000; 96 1177-1179
- 28 Wells P S, Rodger M A, Forgie M A et al.. The ACE D/D genotype is protective against the development of idiopathic deep vein thrombosis and pulmonary embolism. Thromb Haemost. 2003; 90 829-834
- 29 Fatini C, Gensini F, Sticchi E et al.. ACE DD genotype: an independent predisposition factor to venous thromboembolism. Eur J Clin Invest. 2003; 33 642-647
- 30 Medina P, Navarro S, Estelles A et al.. Contribution of polymorphisms in the endothelial protein C receptor gene to soluble endothelial protein C receptor and circulating activated protein C levels, and thrombotic risk. Thromb Haemost. 2004; 91 905-911
- 31 Hoppe B, Tolou F, Dorner T, Kiesewetter H, Salama A. Gene polymorphisms implicated in influencing susceptibility to venous and arterial thromboembolism: frequency distribution in a healthy German population. Thromb Haemost. 2006; 96 465-470
- 32 Luxembourg B, Lindhoff-Last E. Genomic diagnosis of thrombophilia in women: clinical relevance. Hamostaseologie. 2007; 27 22-31
- 33 Delpech M. Genetic testing. Arch Mal Coeur Vaiss. 2003; 96 1030-1032
- 34 Federici C, Gianetti J, Andreassi M G. Genomic medicine and thrombotic risk: who, when, how and why?. Int J Cardiol. 2006; 106 3-9
- 35 Zoller B, Garcia de Frutos P, Hillarp A, Dahlback B. Thrombophilia as a multigenic disease. Haematologica. 1999; 84 59-70
- 36 Pecheniuk N M, Walsh T P, Marsh N A. DNA technology for the detection of common genetic variants that predispose to thrombophilia. Blood Coagul Fibrinolysis. 2000; 11 683-700
- 37 Erali M, Schmidt B, Lyon E, Wittwer C. Evaluation of electronic microarrays for genotyping factor V, factor II, and MTHFR. Clin Chem. 2003; 49 732-739
- 38 Dallapiccola B, Torrente I, Morena A, Dagna-Bricarelli F, Mingarelli R. Genetic testing in Italy, year 2004. Eur J Hum Genet. 2006; 14 911-916
- 39 Grody W W, Griffin J H, Taylor A K, Korf B R, Heit J A. for the ACMG Factor V Leiden Working Group. American College of Medical Genetics consensus statement on factor V Leiden mutation testing. Genet Med. 2001; 3 139-148
- 40 Tripodi A. Issues concerning the laboratory investigation of inherited thrombophilia. Mol Diagn. 2005; 9 181-186
- 41 Hertzberg M S. Genetic testing for thrombophilia mutations. Semin Thromb Hemost. 2005; 31 33-38
- 42 Wu O, Robertson L, Twaddle S et al.. Screening for thrombophilia in high-risk situations: systematic review and cost-effectiveness analysis. The Thrombosis: Risk and Economic Assessment of Thrombophilia Screening (TREATS) study. Health Technol Assess. 2006; 10 1-110
- 43 Peaston A E, Whitelaw E. Epigenetics and phenotypic variation in mammals. Mamm Genome. 2006; 17 365-374
- 44 Parker J, Pagliuca A, Kitiyakara T et al.. Discrepancy between phenotype and genotype on screening for factor V Leiden after transplantation. Blood. 2001; 97 2525-2526
- 45 Hyytiainen S, Wartiovaara-Kautto U, Ulander V M et al.. The procoagulant effects of factor V Leiden may be balanced against decreased levels of factor V and do not reflect in vivo thrombin formation in newborns. Thromb Haemost. 2006; 95 434-440
- 46 Poon T C. Opportunities and limitations of SELDI-TOF-MS in biomedical research: practical advices. Expert Rev Proteomics. 2007; 4 51-65
- 47 Svensson A M, Whiteley G R, Callas P W, Bovill E G. SELDI-TOF plasma profiles distinguish individuals in a protein C-deficient family with thrombotic episodes occurring before age 40. Thromb Haemost. 2006; 96 725-730
- 48 Gelfi C, Vigano A, Ripamonti M et al.. A proteomic analysis of changes in prothrombin and plasma proteins associated with the G20210A mutation. Proteomics. 2004; 4 2151-2159
- 49 Scully M F. Plasma peptidome: a new approach for assessing thrombotic risk?. Thromb Haemost. 2006; 96 697
- 50 Varshavsky A. The N-end rule: functions, mysteries, uses. Proc Natl Acad Sci USA. 1996; 93 12142-12149
- 51 Donners M M, Verluyten M J, Bouwman F G et al.. Proteomic analysis of differential protein expression in human atherosclerotic plaque progression. J Pathol. 2005; 206 39-45
- 52 Weitz J I. Emerging anticoagulants for the treatment of venous thromboembolism. Thromb Haemost. 2006; 96 274-284
- 53 Franchini M, Lippi G. Antagonists of activated factor X and thrombin: innovative antithrombotic agents. Curr Vasc Pharmacol. 2007; 5 121-128
- 54 Watzke H H. Oral anticoagulation after a first episode of venous thromboembolism: how long? How strong?. Thromb Haemost. 1999; 82 124-126
- 55 Ansell J, Hirsh J, Poller L et al.. The pharmacology and management of the vitamin K antagonists: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest. 2004; 126 204S-233S
- 56 du Breuil A L, Umland E M. Outpatient management of anticoagulation therapy. Am Fam Physician. 2007; 75 1031-1042
- 57 Dvorak Z, Ulrichova J, Modriansky M. Role of microtubules network in CYP genes expression. Curr Drug Metab. 2005; 6 545-552
- 58 Arimoto R. Computational models for predicting interactions with cytochrome p450 enzyme. Curr Top Med Chem. 2006; 6 1609-1618
- 59 Rettie A E, Korzekwa K R, Kunze K L et al.. Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: a role for P-4502C9 in the etiology of (S)-warfarin-drug interactions. Chem Res Toxicol. 1992; 5 54-59
- 60 Seifert A, Tatzel S, Schmid R D, Pleiss J. Multiple molecular dynamics simulations of human p450 monooxygenase CYP2C9: the molecular basis of substrate binding and regioselectivity toward warfarin. Proteins. 2006; 64 147-155
- 61 Hlavica P, Lewis D F. Allosteric phenomena in cytochrome P450-catalyzed monooxygenations. Eur J Biochem. 2001; 268 4817-4832
- 62 Schwarz U I. Clinical relevance of genetic polymorphisms in the human CYP2C9 gene. Eur J Clin Invest. 2003; 33 23-30
- 63 Haining R L, Jones J P, Henne K R et al.. Enzymatic determinants of the substrate specificity of CYP2C9: role of B'-C loop residues in providing the pi-stacking anchor site for warfarin binding. Biochemistry. 1999; 38 3285-3292
- 64 Ridderstrom M, Masimirembwa C, Trump-Kallmeyer S et al.. Arginines 97 and 108 in CYP2C9 are important determinants of the catalytic function. Biochem Biophys Res Commun. 2000; 270 983-987
- 65 Williams P A, Cosme J, Ward A et al.. Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature. 2003; 424 464-468
- 66 Clodfelter K H, Waxman D J, Vajda S. Computational solvent mapping reveals the importance of local conformational changes for broad substrate specificity in mammalian cytochromes P450. Biochemistry. 2006; 45 9393-9407
- 67 Wajih N, Sane D C, Hutson S M, Wallin R. Engineering of a recombinant vitamin K-dependent gamma-carboxylation system with enhanced gamma-carboxyglutamic acid forming capacity: evidence for a functional CXXC redox center in the system. J Biol Chem. 2005; 280 10540-10547
- 68 Loriot M A, Beaune P. Vitamin K epoxide reductase: fresh blood for oral anticoagulant therapies. Rev Med Interne. 2006; 27 979-982
- 69 Goodstadt L, Ponting C P. Vitamin K epoxide reductase: homology, active site and catalytic mechanism. Trends Biochem Sci. 2004; 29 289-292
- 70 Oldenburg J, Bevans C G, Muller C R, Watzka M. Vitamin K epoxide reductase complex subunit 1 (VKORC1): the key protein of the vitamin K cycle. Antioxid Redox Signal. 2006; 8 347-353
- 71 Rost S, Fregin A, Ivaskevicius V et al.. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature. 2004; 427 537-541
- 72 Fasco M J, Principe L M, Walsh W A, Friedman P A. Warfarin inhibition of vitamin K 2,3-epoxide reductase in rat liver microsomes. Biochemistry. 1983; 22 5655-5660
- 73 Wallin R, Patrick S D, Martin L F. Rat and human liver vitamin K epoxide reductase: inhibition by thiol blockers and vitamin K1. Int J Biochem. 1987; 19 1063-1068
- 74 Krynetskiy E, McDonnell P. Building individualized medicine: prevention of adverse reactions to warfarin therapy. J Pharmacol Exp Ther. 2007; 322 427-434
- 75 Rieder M J, Reiner A P, Gage B F et al.. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med. 2005; 352 2285-2293
- 76 Zhu Y, Shennan M, Reynolds K K et al.. Estimation of warfarin maintenance dose based on VKORC1 (-1639 G> A) and CYP2C9 genotypes. Clin Chem. 2007; 53 1199-1205
- 77 Montes R, Ruiz de Gaona E, Martinez-Gonzalez M A, Alberca I, Hermida J. The c.-1639G > A polymorphism of the VKORC1 gene is a major determinant of the response to acenocoumarol in anticoagulated patients. Br J Haematol. 2006; 133 183-187
- 78 Gage B F. Pharmacogenetics-based coumarin therapy. Hematology (Am Soc Hematol Educ Program). 2006; 467-473
- 79 Osman A, Enstrom C, Arbring K, Soderkvist P, Lindahl T L. Main haplotypes and mutational analysis of vitamin K epoxide reductase (VKORC1) in a Swedish population: a retrospective analysis of case records. J Thromb Haemost. 2006; 4 1723-1729
- 80 Loebstein R, Dvoskin I, Halkin H et al.. A coding VKORC1 Asp36Tyr polymorphism predisposes to warfarin resistance. Blood. 2007; 109 2477-2480
- 81 Margaglione M, Colaizzo D, D'Andrea G et al.. Genetic modulation of oral anticoagulation with warfarin. Thromb Haemost. 2000; 84 775-778
- 82 Kirchheiner J, Brockmoller J. Clinical consequences of cytochrome P450 2C9 polymorphisms. Clin Pharmacol Ther. 2005; 77 1-16
- 83 Carlquist J F, Horne B D, Muhlestein J B et al.. Genotypes of the cytochrome p450 isoform, CYP2C9, and the vitamin K epoxide reductase complex subunit 1 conjointly determine stable warfarin dose: a prospective study. J Thromb Thrombolysis. 2006; 22 191-197
- 84 Caldwell M D, Berg R L, Zhang K Q et al.. Evaluation of genetic factors for warfarin dose prediction. Clin Med Res. 2007; 5 8-16
- 85 Sconce E A, Daly A K, Khan T I, Wynne H A, Kamali F. APOE genotype makes a small contribution to warfarin dose requirements. Pharmacogenet Genomics. 2006; 16 609-611
- 86 Schalekamp T, Brasse B P, Roijers J F et al.. VKORC1 and CYP2C9 genotypes and acenocoumarol anticoagulation status: interaction between both genotypes affects overanticoagulation. Clin Pharmacol Ther. 2006; 80 13-22
- 87 Brandin H, Myrberg O, Rundlof T, Arvidsson A K, Brenning G. Adverse effects by artificial grapefruit seed extract products in patients on warfarin therapy. Eur J Clin Pharmacol. 2007; 63 565-570
- 88 Kealey C, Chen Z, Christie J et al.. Warfarin and cytochrome P450 2C9 genotype: possible ethnic variation in warfarin sensitivity. Pharmacogenomics. 2007; 8 217-225
- 89 Hertzberg M, Neville S, Favaloro E, McDonald D. External quality assurance of DNA testing for thrombophilia mutations. Am J Clin Pathol. 2005; 123 189-193
- 90 Favaloro E J. Diagnostic issues in thrombophilia: a laboratory scientist's view. Semin Thromb Hemost. 2005; 31 11-16
Prof. Giuseppe Lippi
Sezione di Chimica Clinica, Dipartimento di Scienze Morfologico-Biomediche, Ospedale Policlinico G.B. Rossi, Piazzale Scuro
10, 37134 Verona, Italy
Email: giuseppe.lippi@univr.it; ulippi@tin.it