Semin Thromb Hemost 2007; 33(8): 759-770
DOI: 10.1055/s-2007-1000366
© Thieme Medical Publishers

Genomics and Proteomics in Venous Thromboembolism: Building a Bridge toward a Rational Personalized Medicine Framework

Giuseppe Lippi1 , Massimo Franchini2 , Martina Montagnana1 , Gian Cesare Guidi1
  • 1Sezione di Chimica Clinica, Dipartimento di Scienze Biomediche e Morfologiche, Università di Verona, Verona, Italy
  • 2Servizio di Immunoematologia e Trasfusione - Centro Emofilia, Azienda Ospedaliera di Verona, Verona, Italy
Further Information

Publication History

Publication Date:
04 January 2008 (online)

ABSTRACT

Venous thromboembolism is a major health care problem worldwide and is sustained by a multifactorial pathogenesis where both congenital and acquired causes contribute. It is increasingly being highlighted that a reliable approach based on genomics and proteomics might be effective to construct a rational personalized medicine framework that can be applied in the preclinical, clinical, and therapeutic settings of venous thrombosis. The aim of this review is to provide a concise description of the current and future applications of genomics and proteomics in this challenging pathology.

REFERENCES

  • 1 Blann A D, Lip G Y. Venous thromboembolism.  BMJ. 2006;  332 215-219
  • 2 Weitz J I. Emerging themes in the treatment of venous thromboembolism.  Thromb Haemost. 2006;  96 239-241
  • 3 McPherson E. Genetic diagnosis and testing in clinical practice.  Clin Med Res. 2006;  4 123-129
  • 4 Tripodi A, Mannucci P M. Laboratory investigation of thrombophilia.  Clin Chem. 2001;  47 1597-1606
  • 5 Spencer F A, Becker R C. Diagnosis and management of inherited and acquired thrombophilias.  J Thromb Thrombolysis. 1999;  7 91-104
  • 6 Buchanan G S, Rodgers G M, Branch D W. The inherited thrombophilias: genetics, epidemiology, and laboratory evaluation.  Best Pract Res Clin Obstet Gynaecol. 2003;  17 397-411
  • 7 Samama M, Gerotziafas G, Conard J, Horellou M, Elalamy I. Clinical aspects and laboratory problems in hereditary thrombophilia.  Haemostasis. 1999;  29 76-99
  • 8 Crowther M A, Kelton J G. Congenital thrombophilic states associated with venous thrombosis: a qualitative overview and proposal classification system.  Ann Intern Med. 2003;  138 128-134
  • 9 Franchini M, Veneri D, Salvagno G L, Manzato F, Lippi G. Inherited thrombophilia.  Crit Rev Clin Lab Sci. 2006;  43 249-290
  • 10 Simioni P. The molecular genetics of familial venous thrombosis.  Baillieres Best Pract Res Clin Haematol. 1999;  12 479-503
  • 11 Franco R F, Reitsma P H. Genetic risk factors of venous thrombosis.  Hum Genet. 2001;  109 369-384
  • 12 Schwartz H P, Fischer M, Hopmeier P, Batard M A, Griffin J H. Plasma protein S deficiency in familial thrombotic disease.  Blood. 1984;  64 1297-1300
  • 13 Borgel D, Gandrille S, Aiach M. Protein S deficiency.  Thromb Haemost. 1997;  78 351-356
  • 14 Dahlback B, Hildebrand B. Inherited resistance to activated protein C is corrected by anticoagulant cofactor activity found to be a property of factor V.  Proc Natl Acad Sci USA. 1994;  91 1396-1400
  • 15 Bertina R M, Koeleman B P, Koster T et al.. Mutation in blood coagulation factor V associated with resistance to activated protein C.  Nature. 1994;  369 64-67
  • 16 Rodeghiero F, Tosetto A. Activated protein C resistance and factor V Leiden mutation are independent risk factors for venous thromboembolism.  Ann Intern Med. 1999;  130 643-650
  • 17 Poort S R, Rosendaal F R, Reitsma P H, Bertina R M. A common genetic variation in the 3′-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis.  Blood. 1996;  88 3698-3703
  • 18 Cattaneo M. Hyperhomocysteinemia, atherosclerosis and thrombosis.  Thromb Haemost. 1999;  81 165-176
  • 19 Arruda V R, von Zuben P M, Chiaparini L C, Annichino-Bizzacchi J M, Costa F F. The mutation Ala677 in the methylene tetrahydrofolate reductase gene: a risk factor for arterial disease and venous thrombosis.  Thromb Haemost. 1997;  77 818-821
  • 20 Robetorye R S, Rodgers G M. Update on selected inherited venous thrombotic disorders.  Am J Hematol. 2001;  68 256-268
  • 21 Kyrle P A, Minar E, Hirschl M et al.. High plasma levels of factor VIII end the risk of recurrent venous thrombembolism.  N Engl J Med. 2000;  343 457-462
  • 22 Koster T, Blann A D, Briet E, Vandenbroucke J P, Rosendaal F R. Role of clotting factor VIII in effect of von Willebrand factor on occurrence of deep-vein thrombosis.  Lancet. 1995;  345 152-155
  • 23 Kamphuisen P W, Houwing-Duistermaat J J, van Houwelingen H C et al.. Familial clustering of factor VIII and von Willebrand factor levels.  Thromb Haemost. 1998;  79 323-327
  • 24 Berger M, Mattheisen M, Kulle B et al.. High factor VIII levels in venous thromboembolism show linkage to imprinted loci on chromosomes 5 and 11.  Blood. 2005;  105 638-644
  • 25 Zidane M, de Visser M C, ten Wolde M et al.. Frequency of the TAFI -438 G/A and factor XIIIA Val34Leu polymorphisms in patients with objectively proven pulmonary embolism.  Thromb Haemost. 2003;  90 439-445
  • 26 Camilleri R S, Cohen H. No association between pulmonary embolism or deep vein thrombosis and the -455G/A beta-fibrinogen gene polymorphism.  Blood Coagul Fibrinolysis. 2005;  16 193-198
  • 27 Carter A M, Catto A J, Kohler H P et al.. Alpha-fibrinogen Thr312Ala polymorphism and venous thromboembolism.  Blood. 2000;  96 1177-1179
  • 28 Wells P S, Rodger M A, Forgie M A et al.. The ACE D/D genotype is protective against the development of idiopathic deep vein thrombosis and pulmonary embolism.  Thromb Haemost. 2003;  90 829-834
  • 29 Fatini C, Gensini F, Sticchi E et al.. ACE DD genotype: an independent predisposition factor to venous thromboembolism.  Eur J Clin Invest. 2003;  33 642-647
  • 30 Medina P, Navarro S, Estelles A et al.. Contribution of polymorphisms in the endothelial protein C receptor gene to soluble endothelial protein C receptor and circulating activated protein C levels, and thrombotic risk.  Thromb Haemost. 2004;  91 905-911
  • 31 Hoppe B, Tolou F, Dorner T, Kiesewetter H, Salama A. Gene polymorphisms implicated in influencing susceptibility to venous and arterial thromboembolism: frequency distribution in a healthy German population.  Thromb Haemost. 2006;  96 465-470
  • 32 Luxembourg B, Lindhoff-Last E. Genomic diagnosis of thrombophilia in women: clinical relevance.  Hamostaseologie. 2007;  27 22-31
  • 33 Delpech M. Genetic testing.  Arch Mal Coeur Vaiss. 2003;  96 1030-1032
  • 34 Federici C, Gianetti J, Andreassi M G. Genomic medicine and thrombotic risk: who, when, how and why?.  Int J Cardiol. 2006;  106 3-9
  • 35 Zoller B, Garcia de Frutos P, Hillarp A, Dahlback B. Thrombophilia as a multigenic disease.  Haematologica. 1999;  84 59-70
  • 36 Pecheniuk N M, Walsh T P, Marsh N A. DNA technology for the detection of common genetic variants that predispose to thrombophilia.  Blood Coagul Fibrinolysis. 2000;  11 683-700
  • 37 Erali M, Schmidt B, Lyon E, Wittwer C. Evaluation of electronic microarrays for genotyping factor V, factor II, and MTHFR.  Clin Chem. 2003;  49 732-739
  • 38 Dallapiccola B, Torrente I, Morena A, Dagna-Bricarelli F, Mingarelli R. Genetic testing in Italy, year 2004.  Eur J Hum Genet. 2006;  14 911-916
  • 39 Grody W W, Griffin J H, Taylor A K, Korf B R, Heit J A. for the ACMG Factor V Leiden Working Group. American College of Medical Genetics consensus statement on factor V Leiden mutation testing.  Genet Med. 2001;  3 139-148
  • 40 Tripodi A. Issues concerning the laboratory investigation of inherited thrombophilia.  Mol Diagn. 2005;  9 181-186
  • 41 Hertzberg M S. Genetic testing for thrombophilia mutations.  Semin Thromb Hemost. 2005;  31 33-38
  • 42 Wu O, Robertson L, Twaddle S et al.. Screening for thrombophilia in high-risk situations: systematic review and cost-effectiveness analysis. The Thrombosis: Risk and Economic Assessment of Thrombophilia Screening (TREATS) study.  Health Technol Assess. 2006;  10 1-110
  • 43 Peaston A E, Whitelaw E. Epigenetics and phenotypic variation in mammals.  Mamm Genome. 2006;  17 365-374
  • 44 Parker J, Pagliuca A, Kitiyakara T et al.. Discrepancy between phenotype and genotype on screening for factor V Leiden after transplantation.  Blood. 2001;  97 2525-2526
  • 45 Hyytiainen S, Wartiovaara-Kautto U, Ulander V M et al.. The procoagulant effects of factor V Leiden may be balanced against decreased levels of factor V and do not reflect in vivo thrombin formation in newborns.  Thromb Haemost. 2006;  95 434-440
  • 46 Poon T C. Opportunities and limitations of SELDI-TOF-MS in biomedical research: practical advices.  Expert Rev Proteomics. 2007;  4 51-65
  • 47 Svensson A M, Whiteley G R, Callas P W, Bovill E G. SELDI-TOF plasma profiles distinguish individuals in a protein C-deficient family with thrombotic episodes occurring before age 40.  Thromb Haemost. 2006;  96 725-730
  • 48 Gelfi C, Vigano A, Ripamonti M et al.. A proteomic analysis of changes in prothrombin and plasma proteins associated with the G20210A mutation.  Proteomics. 2004;  4 2151-2159
  • 49 Scully M F. Plasma peptidome: a new approach for assessing thrombotic risk?.  Thromb Haemost. 2006;  96 697
  • 50 Varshavsky A. The N-end rule: functions, mysteries, uses.  Proc Natl Acad Sci USA. 1996;  93 12142-12149
  • 51 Donners M M, Verluyten M J, Bouwman F G et al.. Proteomic analysis of differential protein expression in human atherosclerotic plaque progression.  J Pathol. 2005;  206 39-45
  • 52 Weitz J I. Emerging anticoagulants for the treatment of venous thromboembolism.  Thromb Haemost. 2006;  96 274-284
  • 53 Franchini M, Lippi G. Antagonists of activated factor X and thrombin: innovative antithrombotic agents.  Curr Vasc Pharmacol. 2007;  5 121-128
  • 54 Watzke H H. Oral anticoagulation after a first episode of venous thromboembolism: how long? How strong?.  Thromb Haemost. 1999;  82 124-126
  • 55 Ansell J, Hirsh J, Poller L et al.. The pharmacology and management of the vitamin K antagonists: the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy.  Chest. 2004;  126 204S-233S
  • 56 du Breuil A L, Umland E M. Outpatient management of anticoagulation therapy.  Am Fam Physician. 2007;  75 1031-1042
  • 57 Dvorak Z, Ulrichova J, Modriansky M. Role of microtubules network in CYP genes expression.  Curr Drug Metab. 2005;  6 545-552
  • 58 Arimoto R. Computational models for predicting interactions with cytochrome p450 enzyme.  Curr Top Med Chem. 2006;  6 1609-1618
  • 59 Rettie A E, Korzekwa K R, Kunze K L et al.. Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: a role for P-4502C9 in the etiology of (S)-warfarin-drug interactions.  Chem Res Toxicol. 1992;  5 54-59
  • 60 Seifert A, Tatzel S, Schmid R D, Pleiss J. Multiple molecular dynamics simulations of human p450 monooxygenase CYP2C9: the molecular basis of substrate binding and regioselectivity toward warfarin.  Proteins. 2006;  64 147-155
  • 61 Hlavica P, Lewis D F. Allosteric phenomena in cytochrome P450-catalyzed monooxygenations.  Eur J Biochem. 2001;  268 4817-4832
  • 62 Schwarz U I. Clinical relevance of genetic polymorphisms in the human CYP2C9 gene.  Eur J Clin Invest. 2003;  33 23-30
  • 63 Haining R L, Jones J P, Henne K R et al.. Enzymatic determinants of the substrate specificity of CYP2C9: role of B'-C loop residues in providing the pi-stacking anchor site for warfarin binding.  Biochemistry. 1999;  38 3285-3292
  • 64 Ridderstrom M, Masimirembwa C, Trump-Kallmeyer S et al.. Arginines 97 and 108 in CYP2C9 are important determinants of the catalytic function.  Biochem Biophys Res Commun. 2000;  270 983-987
  • 65 Williams P A, Cosme J, Ward A et al.. Crystal structure of human cytochrome P450 2C9 with bound warfarin.  Nature. 2003;  424 464-468
  • 66 Clodfelter K H, Waxman D J, Vajda S. Computational solvent mapping reveals the importance of local conformational changes for broad substrate specificity in mammalian cytochromes P450.  Biochemistry. 2006;  45 9393-9407
  • 67 Wajih N, Sane D C, Hutson S M, Wallin R. Engineering of a recombinant vitamin K-dependent gamma-carboxylation system with enhanced gamma-carboxyglutamic acid forming capacity: evidence for a functional CXXC redox center in the system.  J Biol Chem. 2005;  280 10540-10547
  • 68 Loriot M A, Beaune P. Vitamin K epoxide reductase: fresh blood for oral anticoagulant therapies.  Rev Med Interne. 2006;  27 979-982
  • 69 Goodstadt L, Ponting C P. Vitamin K epoxide reductase: homology, active site and catalytic mechanism.  Trends Biochem Sci. 2004;  29 289-292
  • 70 Oldenburg J, Bevans C G, Muller C R, Watzka M. Vitamin K epoxide reductase complex subunit 1 (VKORC1): the key protein of the vitamin K cycle.  Antioxid Redox Signal. 2006;  8 347-353
  • 71 Rost S, Fregin A, Ivaskevicius V et al.. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2.  Nature. 2004;  427 537-541
  • 72 Fasco M J, Principe L M, Walsh W A, Friedman P A. Warfarin inhibition of vitamin K 2,3-epoxide reductase in rat liver microsomes.  Biochemistry. 1983;  22 5655-5660
  • 73 Wallin R, Patrick S D, Martin L F. Rat and human liver vitamin K epoxide reductase: inhibition by thiol blockers and vitamin K1.  Int J Biochem. 1987;  19 1063-1068
  • 74 Krynetskiy E, McDonnell P. Building individualized medicine: prevention of adverse reactions to warfarin therapy.  J Pharmacol Exp Ther. 2007;  322 427-434
  • 75 Rieder M J, Reiner A P, Gage B F et al.. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose.  N Engl J Med. 2005;  352 2285-2293
  • 76 Zhu Y, Shennan M, Reynolds K K et al.. Estimation of warfarin maintenance dose based on VKORC1 (-1639 G> A) and CYP2C9 genotypes.  Clin Chem. 2007;  53 1199-1205
  • 77 Montes R, Ruiz de Gaona E, Martinez-Gonzalez M A, Alberca I, Hermida J. The c.-1639G > A polymorphism of the VKORC1 gene is a major determinant of the response to acenocoumarol in anticoagulated patients.  Br J Haematol. 2006;  133 183-187
  • 78 Gage B F. Pharmacogenetics-based coumarin therapy.  Hematology (Am Soc Hematol Educ Program). 2006;  467-473
  • 79 Osman A, Enstrom C, Arbring K, Soderkvist P, Lindahl T L. Main haplotypes and mutational analysis of vitamin K epoxide reductase (VKORC1) in a Swedish population: a retrospective analysis of case records.  J Thromb Haemost. 2006;  4 1723-1729
  • 80 Loebstein R, Dvoskin I, Halkin H et al.. A coding VKORC1 Asp36Tyr polymorphism predisposes to warfarin resistance.  Blood. 2007;  109 2477-2480
  • 81 Margaglione M, Colaizzo D, D'Andrea G et al.. Genetic modulation of oral anticoagulation with warfarin.  Thromb Haemost. 2000;  84 775-778
  • 82 Kirchheiner J, Brockmoller J. Clinical consequences of cytochrome P450 2C9 polymorphisms.  Clin Pharmacol Ther. 2005;  77 1-16
  • 83 Carlquist J F, Horne B D, Muhlestein J B et al.. Genotypes of the cytochrome p450 isoform, CYP2C9, and the vitamin K epoxide reductase complex subunit 1 conjointly determine stable warfarin dose: a prospective study.  J Thromb Thrombolysis. 2006;  22 191-197
  • 84 Caldwell M D, Berg R L, Zhang K Q et al.. Evaluation of genetic factors for warfarin dose prediction.  Clin Med Res. 2007;  5 8-16
  • 85 Sconce E A, Daly A K, Khan T I, Wynne H A, Kamali F. APOE genotype makes a small contribution to warfarin dose requirements.  Pharmacogenet Genomics. 2006;  16 609-611
  • 86 Schalekamp T, Brasse B P, Roijers J F et al.. VKORC1 and CYP2C9 genotypes and acenocoumarol anticoagulation status: interaction between both genotypes affects overanticoagulation.  Clin Pharmacol Ther. 2006;  80 13-22
  • 87 Brandin H, Myrberg O, Rundlof T, Arvidsson A K, Brenning G. Adverse effects by artificial grapefruit seed extract products in patients on warfarin therapy.  Eur J Clin Pharmacol. 2007;  63 565-570
  • 88 Kealey C, Chen Z, Christie J et al.. Warfarin and cytochrome P450 2C9 genotype: possible ethnic variation in warfarin sensitivity.  Pharmacogenomics. 2007;  8 217-225
  • 89 Hertzberg M, Neville S, Favaloro E, McDonald D. External quality assurance of DNA testing for thrombophilia mutations.  Am J Clin Pathol. 2005;  123 189-193
  • 90 Favaloro E J. Diagnostic issues in thrombophilia: a laboratory scientist's view.  Semin Thromb Hemost. 2005;  31 11-16

Prof. Giuseppe Lippi

Sezione di Chimica Clinica, Dipartimento di Scienze Morfologico-Biomediche, Ospedale Policlinico G.B. Rossi, Piazzale Scuro

10, 37134 Verona, Italy

Email: giuseppe.lippi@univr.it; ulippi@tin.it