RSS-Feed abonnieren
DOI: 10.1055/s-2007-963666
© Georg Thieme Verlag KG Stuttgart · New York
Hochauflösende Bildgebung atherosklerotischer Gefäßwandläsionen der Karotiden durch die Magnetresonanztomografie
High-Resolution Magnetic Resonance Imaging of Carotid Atherosclerotic PlaquePublikationsverlauf
eingereicht: 27.5.2007
angenommen: 13.10.2007
Publikationsdatum:
05. Dezember 2007 (online)

Zusammenfassung
Der Schlaganfall ist die dritthäufigste Todesursache in Deutschland mit einer Inzidenz von nahezu 150 000 Todesfällen pro Jahr. Um zerebrovaskuläre Ereignisse zu verhindern, gilt derzeit die Karotisendarterektomie oder alternativ das Stenting der Karotiden als Verfahren der Wahl. Allerdings wird allgemein angenommen, dass der Schweregrad einer Stenose als alleiniges Kriterium nur ein schlechter Prädiktor des klinischen Outcomes und somit eine schlechte Grundlage zur Indikationsstellung operativer oder interventioneller Maßnahmen ist. So profitieren symptomatische und asymptomatische Patienten in einem unterschiedlichem Ausmaß von der Karotisendarterektomie: Um einen Schlaganfall in symptomatischen Patienten mit > 70 % Stenose zu verhindern, müssen 3 - 6 Patienten mit einer Karotisendarterektomie therapiert werden, während es 14 - 17 solcher Operationen bedarf, um einen Schlaganfall in asymptomatischen Patienten mit > 50 % Stenose zu verhindern. Es gilt heutzutage allgemein als akzeptiert, dass neben dem Stenosegrad auch die Zusammensetzung und die Oberflächenbeschaffenheit atherosklerotischer Plaques die Vulnerabilität und damit die Wahrscheinlichkeit, ein zerebrovaskuläres Ereignis zu erleiden, maßgeblich mitbestimmen. In diesem Beitrag soll der derzeitige Stand der Plaque-Bildgebung in den Karotiden durch die Magnetresonanztomografie (MRT) dargestellt werden. Dabei sollen die für die Bildgebung relevante Pathophysiologie der Atherosklerose sowie das Konzept des „vulnerablen Plaques” erläutert werden. Die technischen Aspekte der Plaque-Bildgebung, inklusive der Voraussetzungen der Hard- und Software, sowie die MRT-Sequenzen bzw. -Protokolle werden dargestellt. Der aktuelle Stand der Forschung hinsichtlich des Vergleichs von MRT und Histopathologie, Nachweis der Progression der Atherosklerose und der Auswirkung verschiedener Risikofaktoren wird vorgestellt.
Abstract
Stroke is the third most common cause of mortality in the United States with an incidence rate of approximately 700 000 deaths per year. As a means to prevent cerebrovascular events, current concepts advocate endarterectomy or carotid stenting in patients with advanced carotid disease. Arterial stenosis alone has been shown to be a poor predictor of cardiovascular events and therefore both arterial stenosis and patient symptom status are taken as indications for interventional therapy. Several studies have shown that symptomatic subjects benefit more from a carotid endarterectomy than asymptomatic subjects: 3 - 6 carotid endarterectomies are needed to prevent one stroke per year in symptomatic subjects with > 70 % stenosis compared to 14 - 17 carotid endarterectomies in asymptomatic patients with > 50 % stenosis. It is commonly accepted today that factors other than the degree of luminal stenosis can determine a patient’s symptom status, such as the composition or the superficial structure of atherosclerotic plaque. High-resolution magnetic resonance imaging has overcome the limitations of current angiographic techniques and has emerged as a leading non-invasive imaging modality for atherosclerotic disease, especially within carotid arteries and other large vessels. In this review, the state of the art in MRI of atherosclerosis is presented in terms of hardware and image acquisition protocols. Also, the results of validation studies for measuring lesion size, composition and inflammation will be summarized. Finally, the status of several clinical trials involving MRI of atherosclerosis will be reviewed.
Key words
carotid arteries - vascular - MR imaging - atherosclerosis - vulnerable plaque
Literatur
- 1
Rijbroek A, Wisselink W, Vriens E M. et al .
Asymptomatic carotid artery stenosis: past, present and future. How to improve patient
selection?.
Eur Neurol.
2006;
56
139-154
MissingFormLabel
- 2
Rothwell P M.
Incidence, risk factors and prognosis of stroke and TIA: the need for high-quality,
large-scale epidemiological studies and meta-analyses.
Cerebrovasc Dis.
2003;
16
2-10
MissingFormLabel
- 3
Moore W S, Barnett H J, Beebe H G. et al .
Guidelines for carotid endarterectomy. A multidisciplinary consensus statement from
the Ad Hoc Committee, American Heart Association.
Circulation.
1995;
91
566-579
MissingFormLabel
- 4
Gates P C, Chambers B, Yan B. et al .
Symptomatic and asymptomatic carotid stenosis: just when we thought we had all the
answers.
Intern Med J.
2006;
36
445-451
MissingFormLabel
- 5
Golledge J, Greenhalgh R M, Davies A H.
The symptomatic carotid plaque.
Stroke.
2000;
31
774-781
MissingFormLabel
- 6
Naghavi M, Libby P, Falk E. et al .
From vulnerable plaque to vulnerable patient: a call for new definitions and risk
assessment strategies: Part I.
Circulation.
2003;
108
1664-1672
MissingFormLabel
- 7
Naghavi M, Libby P, Falk E. et al .
From vulnerable plaque to vulnerable patient: a call for new definitions and risk
assessment strategies: Part II.
Circulation.
2003;
108
1772-178
MissingFormLabel
- 8
Stary H C, Chandler A B, Dinsmore R E. et al .
A definition of advanced types of atherosclerotic lesions and a histological classification
of atherosclerosis. A report from the Committee on Vascular Lesions of the Council
on Arteriosclerosis, American Heart Association.
Circulation.
1995;
92
1355-1374
MissingFormLabel
- 9
Virmani R, Kolodgie F D, Burke A P. et al .
Lessons from sudden coronary death: a comprehensive morphological classification scheme
for atherosclerotic lesions.
Arterioscler Thromb Vasc Biol.
2000;
20
1262-1275
MissingFormLabel
- 10
Ambrose J A, Tannenbaum M A, Alexopoulos D. et al .
Angiographic progression of coronary artery disease and the development of myocardial
infarction.
J Am Coll Cardiol.
1988;
12
56-62
MissingFormLabel
- 11
Little W C, Constantinescu M, Applegate R J. et al .
Can coronary angiography predict the site of a subsequent myocardial infarction in
patients with mild-to-moderate coronary artery disease?.
Circulation.
1988;
78
1157-1166
MissingFormLabel
- 12
Fuster V, Stein B, Ambrose J A. et al .
Atherosclerotic plaque rupture and thrombosis. Evolving concepts.
Circulation.
1990;
82
II47-II59
MissingFormLabel
- 13
Falk E, Shah P K, Fuster V.
Coronary plaque disruption.
Circulation.
1995;
92
657-671
MissingFormLabel
- 14
Bassiouny H S, Sakaguchi Y, Mikucki S A. et al .
Juxtalumenal location of plaque necrosis and neoformation in symptomatic carotid stenosis.
J Vasc Surg.
1997;
26
585-594
MissingFormLabel
- 15
Falk E.
Stable versus unstable atherosclerosis: clinical aspects.
Am Heart J.
1999;
138
S421-S425
MissingFormLabel
- 16
Yuan C, Mitsumori L M, Beach K W. et al .
Carotid atherosclerotic plaque: noninvasive MR characterization and identification
of vulnerable lesions.
Radiology.
2001;
221
285-299
MissingFormLabel
- 17
Fayad Z A, Fuster V.
Characterization of atherosclerotic plaques by magnetic resonance imaging.
Ann N Y Acad Sci.
2000;
902
173-186
MissingFormLabel
- 18
Saam T, Kerwin W S, Chu B. et al .
Sample size calculation for clinical trials using magnetic resonance imaging for the
quantitative assessment of carotid atherosclerosis.
J Cardiovasc Magn Reson.
2005;
7
799-808
MissingFormLabel
- 19
Saam T, Hatsukami T S, Yarnykh V L. et al .
Reader and platform reproducibility for quantitative assessment of carotid atherosclerotic
plaque using 1.5T Siemens, Philips, and General Electric scanners.
J Magn Reson Imaging.
2007;
26
344-352
MissingFormLabel
- 20
Hayes C E, Mathis C M, Yuan C.
Surface coil phased arrays for high-resolution imaging of the carotid arteries.
J Magn Reson Imaging.
1996;
6
109-112
MissingFormLabel
- 21
Toussaint J F, Southern J F, Fuster V. et al .
T2-weighted contrast for NMR characterization of human atherosclerosis.
Arterioscler Thromb Vasc Biol.
1995;
15
1533-1542
MissingFormLabel
- 22
Yuan C, Murakami J W, Hayes C E. et al .
Phased-array magnetic resonance imaging of the carotid artery bifurcation: preliminary
results in healthy volunteers and a patient with atherosclerotic disease.
J Magn Reson Imaging.
1995;
5
561-565
MissingFormLabel
- 23
Cai J, Hatsukami T S, Ferguson M S. et al .
In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core
size in atherosclerotic carotid plaque: comparison of high-resolution, contrast-enhanced
magnetic resonance imaging and histology.
Circulation.
2005;
112
3437-3444
MissingFormLabel
- 24
Hatsukami T S, Ross R, Polissar N L. et al .
Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid
plaque in vivo with high-resolution magnetic resonance imaging.
Circulation.
2000;
102
959-964
MissingFormLabel
- 25
Saam T, Ferguson M S, Yarnykh V L. et al .
Quantitative evaluation of carotid plaque composition by in vivo MRI.
Arterioscler Thromb Vasc Biol.
2005;
25
234-239
MissingFormLabel
- 26
Clarke S E, Hammond R R, Mitchell J R. et al .
Quantitative assessment of carotid plaque composition using multicontrast MRI and
registered histology.
Magn Reson Med.
2003;
50
1199-1208
MissingFormLabel
- 27
Shinnar M, Fallon J T, Wehrli S. et al .
The diagnostic accuracy of ex vivo MRI for human atherosclerotic plaque characterization.
Arterioscler Thromb Vasc Biol.
1999;
19
2756-2561
MissingFormLabel
- 28
Koktzoglou I, Chung Y C, Mani V. et al .
Multislice dark-blood carotid artery wall imaging: a 1.5 T and 3.0 T comparison.
J Magn Reson Imaging.
2006;
23
699-705
MissingFormLabel
- 29
Yarnykh V L, Terashima M, Hayes C E. et al .
Multicontrast black-blood MRI of carotid arteries: comparison between 1.5 and 3 tesla
magnetic field strengths.
J Magn Reson Imaging.
2006;
23
691-968
MissingFormLabel
- 30
Yarnykh V L, Yuan C.
T1-insensitive flow suppression using quadruple inversion-recovery.
Magn Reson Med.
2002;
48
899-905
MissingFormLabel
- 31
Yarnykh V L, Yuan C.
Multislice double inversion-recovery black-blood imaging with simultaneous slice reinversion.
J Magn Reson Imaging.
2003;
17
478-483
MissingFormLabel
- 32
Yuan C, Zhao X Q, Hatsukami T S.
Quantitative evaluation of carotid atherosclerotic plaques by magnetic resonance imaging.
Curr Atheroscler Rep.
2002;
4
351-357
MissingFormLabel
- 33
Kim W Y, Danias P G, Stuber M. et al .
Coronary magnetic resonance angiography for the detection of coronary stenoses.
N Engl J Med.
2001;
345
1863-1869
MissingFormLabel
- 34
Ropers D, Regenfus M, Wasmeier G. et al .
Non-interventional cardiac diagnostics: computed tomography, magnetic resonance and
real-time three-dimensional echocardiography. Techniques and clinical applications.
Minerva Cardioangiol.
2004;
52
407-417
MissingFormLabel
- 35
Deshpande V S, Shea S M, Laub G. et al .
3D magnetization-prepared true-FISP: a new technique for imaging coronary arteries.
Magn Reson Med.
2001;
46
494-502
MissingFormLabel
- 36
Bornert P, Stuber M, Botnar R M. et al .
Direct comparison of 3D spiral vs. Cartesian gradient-echo coronary magnetic resonance
angiography.
Magn Reson Med.
2001;
46
789-794
MissingFormLabel
- 37
Katoh M, Stuber M, Buecker A. et al .
Spin-labeling coronary MR angiography with steady-state free precession and radial
k-space sampling: initial results in healthy volunteers.
Radiology.
2005;
236
1047-1052
MissingFormLabel
- 38
Yuan C, Kerwin W S, Yarnykh V L. et al .
MRI of atherosclerosis in clinical trials.
NMR Biomed.
2006;
19
636-654
MissingFormLabel
- 39
Yarnykh V L, Yuan C.
Comparison of 2D and 3D black-blood techniques for high-resolution T 1-weighted imaging
of carotid arteries.
Proceedings of the 11th Annual Meeting of ISMRM, Toronto, Canada.
2003;
1632
MissingFormLabel
- 40
Yuan C, Petty C, O’Brien K D. et al .
In vitro and in situ magnetic resonance imaging signal features of atherosclerotic
plaque-associated lipids.
Arterioscler Thromb Vasc Biol.
1997;
17
1496-1503
MissingFormLabel
- 41
Mani V, Itskovich V V, Aguiar S H. et al .
Comparison of gated and non-gated fast multislice black-blood carotid imaging using
rapid extended coverage and inflow/outflow saturation techniques.
J Magn Reson Imaging.
2005;
22
628-633
MissingFormLabel
- 42
Luo Y, Polissar N, Han C. et al .
Accuracy and uniqueness of three in vivo measurements of atherosclerotic carotid plaque
morphology with black blood MRI.
Magn Reson Med.
2003;
50
75-82
MissingFormLabel
- 43
Kang X, Polissar N L, Han C. et al .
Analysis of the measurement precision of arterial lumen and wall areas using high-resolution
MRI.
Magn Reson Med.
2000;
44
968-972
MissingFormLabel
- 44
Eubank W B, Yuan C, Fisher E R. et al .
Endarterectomy specimen shrinkage: Comparison of T 2-weighted MR imaging of specimen
ex vivo to histological process.
J of Vasc Investigation.
1998;
4
147-152
MissingFormLabel
- 45
Kolodgie F D, Gold H K, Burke A P. et al .
Intraplaque hemorrhage and progression of coronary atheroma.
N Engl J Med.
2003;
349
2316-2325
MissingFormLabel
- 46
Chu B, Kampschulte A, Ferguson M S. et al .
Hemorrhage in the Atherosclerotic Carotid Plaque: A High-Resolution MRI Study.
Stroke.
2004;
35
1079-1084
MissingFormLabel
- 47
Moody A R, Murphy R E, Morgan P S. et al .
Characterization of complicated carotid plaque with magnetic resonance direct thrombus
imaging in patients with cerebral ischemia.
Circulation.
2003;
107
3047-3052
MissingFormLabel
- 48
Cappendijk V C, Cleutjens K B, Heeneman S. et al .
In vivo detection of hemorrhage in human atherosclerotic plaques with magnetic resonance
imaging.
J Magn Reson Imaging.
2004;
20
105-110
MissingFormLabel
- 49
Takaya N, Yuan C, Chu B. et al .
Presence of intraplaque hemorrhage stimulates progression of carotid atherosclerotic
plaques: a high-resolution magnetic resonance imaging study.
Circulation.
2005;
111
2768-2775
MissingFormLabel
- 50
Kampschulte A, Ferguson M S, Kerwin W S. et al .
Differentiation of intraplaque versus juxtaluminal hemorrhage/thrombus in advanced
human carotid atherosclerotic lesions by in vivo magnetic resonance imaging.
Circulation.
2004;
110
3239-3244
MissingFormLabel
- 51
Kolodgie F D, Burke A P, Farb A. et al .
The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion
to acute coronary syndromes.
Curr Opin Cardiol.
2001;
16
285-292
MissingFormLabel
- 52
Kolodgie F D, Virmani R, Burke A P. et al .
Pathologic assessment of the vulnerable human coronary plaque.
Heart.
2004;
90
1385-1391
MissingFormLabel
- 53
Redgrave J N, Lovett J K, Gallagher P J. et al .
Histological assessment of 526 symptomatic carotid plaques in relation to the nature
and timing of ischemic symptoms: the Oxford plaque study.
Circulation.
2006;
113
2320-2328
MissingFormLabel
- 54
Devuyst G, Karapanayiotides T, Ruchat P. et al .
Ultrasound measurement of the fibrous cap in symptomatic and asymptomatic atheromatous
carotid plaques.
Circulation.
2005;
111
2776-2782
MissingFormLabel
- 55
Yuan C, Zhang S X, Polissar N L. et al .
Identification of fibrous cap rupture with magnetic resonance imaging is highly associated
with recent transient ischemic attack or stroke.
Circulation.
2002;
105
181-185
MissingFormLabel
- 56
Chu B, Yuan C, Takaya N. et al .
Images in cardiovascular medicine. Serial high-spatial-resolution, multisequence magnetic
resonance imaging studies identify fibrous cap rupture and penetrating ulcer into
carotid atherosclerotic plaque.
Circulation.
2006;
113
e660-e661
MissingFormLabel
- 57
Hansson G K.
Inflammation, atherosclerosis, and coronary artery disease.
N Engl J Med.
2005;
352
1685-1695
MissingFormLabel
- 58
Kerwin W, Hooker A, Spilker M. et al .
Quantitative magnetic resonance imaging analysis of neovasculature volume in carotid
atherosclerotic plaque.
Circulation.
2003;
107
851-856
MissingFormLabel
- 59
Kerwin W S, O’Brien K D, Ferguson M S. et al .
Inflammation in carotid atherosclerotic plaque: a dynamic contrast-enhanced MR imaging
study.
Radiology.
2006;
241
459-468
MissingFormLabel
- 60
Saam T, Yuan C, Chu B. et al .
Predictors of carotid atherosclerotic plaque progression as measured by noninvasive
magnetic resonance imaging.
Atherosclerosis.
2007;
194
e34-e42
MissingFormLabel
- 61
Corti R, Fuster V, Fayad Z A. et al .
Lipid lowering by simvastatin induces regression of human atherosclerotic lesions:
two years’ follow-up by high-resolution noninvasive magnetic resonance imaging.
Circulation.
2002;
106
2884-2887
MissingFormLabel
- 62
Zhao X Q, Yuan C, Hatsukami T S. et al .
Effects of prolonged intensive lipid-lowering therapy on the characteristics of carotid
atherosclerotic plaques in vivo by MRI: a case-control study.
Arterioscler Thromb Vasc Biol.
2001;
21
1623-1629
MissingFormLabel
- 63
Saam T, Cai J M, Cai Y Q. et al .
Carotid plaque composition differs between ethno-racial groups: an MRI pilot study
comparing mainland Chinese and American Caucasian patients.
Arterioscler Thromb Vasc Biol.
2005;
25
611-616
MissingFormLabel
- 64
Saam T, Cai J, Ma L. et al .
Comparison of symptomatic and asymptomatic atherosclerotic carotid plaque features
with in vivo MR imaging.
Radiology.
2006;
240
464-472
MissingFormLabel
- 65
Takaya N, Yuan C, Chu B. et al .
Association between carotid plaque characteristics and subsequent ischemic cerebrovascular
events: a prospective assessment with MRI - initial results.
Stroke.
2006;
37
818-823
MissingFormLabel
- 66
Schmitz S A, Taupitz M, Wagner S. et al .
Magnetic resonance imaging of atherosclerotic plaques using superparamagnetic iron
oxide particles.
J Magn Reson Imaging.
2001;
14
355-361
MissingFormLabel
- 67
Ruehm S G, Corot C, Vogt P. et al .
Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic
particles of iron oxide in hyperlipidemic rabbits.
Circulation.
2001;
103
415-422
MissingFormLabel
- 68
Tang T, Howarth S P, Miller S R. et al .
Assessment of inflammatory burden contralateral to the symptomatic carotid stenosis
using high-resolution ultrasmall, superparamagnetic iron oxide-enhanced MRI.
Stroke.
2006;
37
2266-2270
MissingFormLabel
- 69
Wentzel J J, Aguiar S H, Fayad Z A.
Vascular MRI in the diagnosis and therapy of the high risk atherosclerotic plaque.
J Interv Cardiol.
2003;
16
129-142
MissingFormLabel
- 70
Yu X, Song S K, Chen J. et al .
High-resolution MRI characterization of human thrombus using a novel fibrin-targeted
paramagnetic nanoparticle contrast agent.
Magn Reson Med.
2000;
44
867-872
MissingFormLabel
- 71
Flacke S, Fischer S, Scott M J. et al .
Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting
vulnerable plaques.
Circulation.
2001;
104
1280-1285
MissingFormLabel
- 72
Botnar R M, Perez A S, Witte S. et al .
In vivo molecular imaging of acute and subacute thrombosis using a fibrin-binding
magnetic resonance imaging contrast agent.
Circulation.
2004;
109
2023-2029
MissingFormLabel
- 73
Botnar R M, Buecker A, Wiethoff A J. et al .
In vivo magnetic resonance imaging of coronary thrombosis using a fibrin-binding molecular
magnetic resonance contrast agent.
Circulation.
2004;
110
1463-1466
MissingFormLabel
- 74
Spuentrup E, Buecker A, Katoh M. et al .
Molecular magnetic resonance imaging of coronary thrombosis and pulmonary emboli with
a novel fibrin-targeted contrast agent.
Circulation.
2005;
111
1377-1382
MissingFormLabel
- 75
Fenchel M, Jost D, Kramer U. et al .
Cardiovascular whole-body MR imaging in patients with symptomatic peripheral arterial
occlusive disease.
Fortschr Röntgenstr.
2006;
178
491-499
MissingFormLabel
- 76
Neff K W, Kilian A K, Meairs S. et al .
Correlation of duplex sonographic stenosis grading by means of cross-sectional analysis
and MR-tomographic blood volume flow quantification in unilateral stenosis of the
internal carotid artery.
Fortschr Röntgenstr.
2005;
177
992-999
MissingFormLabel
- 77
Busch S, Johnson T R, Nikolaou K. et al .
Visual and automatic grading of coronary artery stenoses with 64-slice CT angiography
in reference to invasive angiography.
Eur Radiol.
2007;
17
1445-1451
MissingFormLabel
- 78
Nikolaou K, Knez A, Rist C. et al .
Accuracy of 64-MDCT in the diagnosis of ischemic heart disease.
Am J Roentgenol.
2006;
187
111-117
MissingFormLabel
- 79
Nikolaou K, Becker C R, Muders M. et al .
Multidetector-row computed tomography and magnetic resonance imaging of atherosclerotic
lesions in human ex vivo coronary arteries.
Atherosclerosis.
2004;
174
243-252
MissingFormLabel
- 80
Leber A W, Knez A, Ziegler von F. et al .
Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed
tomography: a comparative study with quantitative coronary angiography and intravascular
ultrasound.
J Am Coll Cardiol.
2005;
46
147-154
MissingFormLabel
- 81
Becker C R, Knez A, Leber A. et al .
Initial experiences with multi-slice detector spiral CT in diagnosis of arteriosclerosis
of coronary vessels.
Radiologe.
2000;
40
118-122
MissingFormLabel
- 82
Gronholdt M L, Nordestgaard B G, Schroeder T V. et al .
Ultrasonic echolucent carotid plaques predict future strokes.
Circulation.
2001;
104
68-73
MissingFormLabel
- 83
Nissen S E, Tsunoda T, Tuzcu E M. et al .
Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute
coronary syndromes: a randomized controlled trial.
JAMA.
2003;
290
2292-2300
MissingFormLabel
- 84
Nissen S E, Tuzcu E M, Schoenhagen P. et al .
Effect of intensive compared with moderate lipid-lowering therapy on progression of
coronary atherosclerosis: a randomized controlled trial.
JAMA.
2004;
291
1071-1080
MissingFormLabel
- 85
Meissner O A, Rieber J, Babaryka G. et al .
Intravascular optical coherence tomography: differentiation of atherosclerotic plaques
and quantification of vessel dimensions in crural arterial specimens.
Fortschr Röntgenstr.
2006;
178
214-220
MissingFormLabel
- 86
Toussaint J F, LaMuraglia G M, Southern J F. et al .
Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components
of human atherosclerosis in vivo.
Circulation.
1996;
94
932-938
MissingFormLabel
- 87
Serfaty J M, Chaabane L, Tabib A. et al .
Atherosclerotic plaques: classification and characterization with T 2-weighted high-spatial-resolution
MR imaging - an in vitro study.
Radiology.
2001;
219
403-410
MissingFormLabel
Dr. Tobias Saam
Institut für Klinische Radiologie, Ludwig-Maximilians-Universität München
Marchioninistr. 15
81377 München
Telefon: ++ 49/89/70 95 36 20
Fax: ++ 49/89/70 95 88 32
eMail: Tobias.Saam@med.uni-muenchen.de