Rofo 2008; 180(2): 100-111
DOI: 10.1055/s-2007-963666
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Hochauflösende Bildgebung atherosklerotischer Gefäßwandläsionen der Karotiden durch die Magnetresonanztomografie

High-Resolution Magnetic Resonance Imaging of Carotid Atherosclerotic PlaqueT. Saam1 , S. O. Schoenberg2 , T. S. Hatsukami3 , M. Reiser1 , C. Yuan4 , K. Nikolaou1
  • 1Institut für Klinische Radiologie, Ludwig-Maximilians-Universität München
  • 2Institut für Klinische Radiologie, Klinikum Mannheim gGmbH, Universitätsklinikum Medizinische Fakultät Mannheim
  • 3Surgery, VA Puget Sound Health Care System and University of Washington, USA
  • 4Radiology, University of Washington, USA
Further Information

Publication History

eingereicht: 27.5.2007

angenommen: 13.10.2007

Publication Date:
05 December 2007 (online)

Zusammenfassung

Der Schlaganfall ist die dritthäufigste Todesursache in Deutschland mit einer Inzidenz von nahezu 150 000 Todesfällen pro Jahr. Um zerebrovaskuläre Ereignisse zu verhindern, gilt derzeit die Karotisendarterektomie oder alternativ das Stenting der Karotiden als Verfahren der Wahl. Allerdings wird allgemein angenommen, dass der Schweregrad einer Stenose als alleiniges Kriterium nur ein schlechter Prädiktor des klinischen Outcomes und somit eine schlechte Grundlage zur Indikationsstellung operativer oder interventioneller Maßnahmen ist. So profitieren symptomatische und asymptomatische Patienten in einem unterschiedlichem Ausmaß von der Karotisendarterektomie: Um einen Schlaganfall in symptomatischen Patienten mit > 70 % Stenose zu verhindern, müssen 3 - 6 Patienten mit einer Karotisendarterektomie therapiert werden, während es 14 - 17 solcher Operationen bedarf, um einen Schlaganfall in asymptomatischen Patienten mit > 50 % Stenose zu verhindern. Es gilt heutzutage allgemein als akzeptiert, dass neben dem Stenosegrad auch die Zusammensetzung und die Oberflächenbeschaffenheit atherosklerotischer Plaques die Vulnerabilität und damit die Wahrscheinlichkeit, ein zerebrovaskuläres Ereignis zu erleiden, maßgeblich mitbestimmen. In diesem Beitrag soll der derzeitige Stand der Plaque-Bildgebung in den Karotiden durch die Magnetresonanztomografie (MRT) dargestellt werden. Dabei sollen die für die Bildgebung relevante Pathophysiologie der Atherosklerose sowie das Konzept des „vulnerablen Plaques” erläutert werden. Die technischen Aspekte der Plaque-Bildgebung, inklusive der Voraussetzungen der Hard- und Software, sowie die MRT-Sequenzen bzw. -Protokolle werden dargestellt. Der aktuelle Stand der Forschung hinsichtlich des Vergleichs von MRT und Histopathologie, Nachweis der Progression der Atherosklerose und der Auswirkung verschiedener Risikofaktoren wird vorgestellt.

Abstract

Stroke is the third most common cause of mortality in the United States with an incidence rate of approximately 700 000 deaths per year. As a means to prevent cerebrovascular events, current concepts advocate endarterectomy or carotid stenting in patients with advanced carotid disease. Arterial stenosis alone has been shown to be a poor predictor of cardiovascular events and therefore both arterial stenosis and patient symptom status are taken as indications for interventional therapy. Several studies have shown that symptomatic subjects benefit more from a carotid endarterectomy than asymptomatic subjects: 3 - 6 carotid endarterectomies are needed to prevent one stroke per year in symptomatic subjects with > 70 % stenosis compared to 14 - 17 carotid endarterectomies in asymptomatic patients with > 50 % stenosis. It is commonly accepted today that factors other than the degree of luminal stenosis can determine a patient’s symptom status, such as the composition or the superficial structure of atherosclerotic plaque. High-resolution magnetic resonance imaging has overcome the limitations of current angiographic techniques and has emerged as a leading non-invasive imaging modality for atherosclerotic disease, especially within carotid arteries and other large vessels. In this review, the state of the art in MRI of atherosclerosis is presented in terms of hardware and image acquisition protocols. Also, the results of validation studies for measuring lesion size, composition and inflammation will be summarized. Finally, the status of several clinical trials involving MRI of atherosclerosis will be reviewed.

Literatur

  • 1 Rijbroek A, Wisselink W, Vriens E M. et al . Asymptomatic carotid artery stenosis: past, present and future. How to improve patient selection?.  Eur Neurol. 2006;  56 139-154
  • 2 Rothwell P M. Incidence, risk factors and prognosis of stroke and TIA: the need for high-quality, large-scale epidemiological studies and meta-analyses.  Cerebrovasc Dis. 2003;  16 2-10
  • 3 Moore W S, Barnett H J, Beebe H G. et al . Guidelines for carotid endarterectomy. A multidisciplinary consensus statement from the Ad Hoc Committee, American Heart Association.  Circulation. 1995;  91 566-579
  • 4 Gates P C, Chambers B, Yan B. et al . Symptomatic and asymptomatic carotid stenosis: just when we thought we had all the answers.  Intern Med J. 2006;  36 445-451
  • 5 Golledge J, Greenhalgh R M, Davies A H. The symptomatic carotid plaque.  Stroke. 2000;  31 774-781
  • 6 Naghavi M, Libby P, Falk E. et al . From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I.  Circulation. 2003;  108 1664-1672
  • 7 Naghavi M, Libby P, Falk E. et al . From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II.  Circulation. 2003;  108 1772-178
  • 8 Stary H C, Chandler A B, Dinsmore R E. et al . A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association.  Circulation. 1995;  92 1355-1374
  • 9 Virmani R, Kolodgie F D, Burke A P. et al . Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions.  Arterioscler Thromb Vasc Biol. 2000;  20 1262-1275
  • 10 Ambrose J A, Tannenbaum M A, Alexopoulos D. et al . Angiographic progression of coronary artery disease and the development of myocardial infarction.  J Am Coll Cardiol. 1988;  12 56-62
  • 11 Little W C, Constantinescu M, Applegate R J. et al . Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease?.  Circulation. 1988;  78 1157-1166
  • 12 Fuster V, Stein B, Ambrose J A. et al . Atherosclerotic plaque rupture and thrombosis. Evolving concepts.  Circulation. 1990;  82 II47-II59
  • 13 Falk E, Shah P K, Fuster V. Coronary plaque disruption.  Circulation. 1995;  92 657-671
  • 14 Bassiouny H S, Sakaguchi Y, Mikucki S A. et al . Juxtalumenal location of plaque necrosis and neoformation in symptomatic carotid stenosis.  J Vasc Surg. 1997;  26 585-594
  • 15 Falk E. Stable versus unstable atherosclerosis: clinical aspects.  Am Heart J. 1999;  138 S421-S425
  • 16 Yuan C, Mitsumori L M, Beach K W. et al . Carotid atherosclerotic plaque: noninvasive MR characterization and identification of vulnerable lesions.  Radiology. 2001;  221 285-299
  • 17 Fayad Z A, Fuster V. Characterization of atherosclerotic plaques by magnetic resonance imaging.  Ann N Y Acad Sci. 2000;  902 173-186
  • 18 Saam T, Kerwin W S, Chu B. et al . Sample size calculation for clinical trials using magnetic resonance imaging for the quantitative assessment of carotid atherosclerosis.  J Cardiovasc Magn Reson. 2005;  7 799-808
  • 19 Saam T, Hatsukami T S, Yarnykh V L. et al . Reader and platform reproducibility for quantitative assessment of carotid atherosclerotic plaque using 1.5T Siemens, Philips, and General Electric scanners.  J Magn Reson Imaging. 2007;  26 344-352
  • 20 Hayes C E, Mathis C M, Yuan C. Surface coil phased arrays for high-resolution imaging of the carotid arteries.  J Magn Reson Imaging. 1996;  6 109-112
  • 21 Toussaint J F, Southern J F, Fuster V. et al . T2-weighted contrast for NMR characterization of human atherosclerosis.  Arterioscler Thromb Vasc Biol. 1995;  15 1533-1542
  • 22 Yuan C, Murakami J W, Hayes C E. et al . Phased-array magnetic resonance imaging of the carotid artery bifurcation: preliminary results in healthy volunteers and a patient with atherosclerotic disease.  J Magn Reson Imaging. 1995;  5 561-565
  • 23 Cai J, Hatsukami T S, Ferguson M S. et al . In vivo quantitative measurement of intact fibrous cap and lipid-rich necrotic core size in atherosclerotic carotid plaque: comparison of high-resolution, contrast-enhanced magnetic resonance imaging and histology.  Circulation. 2005;  112 3437-3444
  • 24 Hatsukami T S, Ross R, Polissar N L. et al . Visualization of fibrous cap thickness and rupture in human atherosclerotic carotid plaque in vivo with high-resolution magnetic resonance imaging.  Circulation. 2000;  102 959-964
  • 25 Saam T, Ferguson M S, Yarnykh V L. et al . Quantitative evaluation of carotid plaque composition by in vivo MRI.  Arterioscler Thromb Vasc Biol. 2005;  25 234-239
  • 26 Clarke S E, Hammond R R, Mitchell J R. et al . Quantitative assessment of carotid plaque composition using multicontrast MRI and registered histology.  Magn Reson Med. 2003;  50 1199-1208
  • 27 Shinnar M, Fallon J T, Wehrli S. et al . The diagnostic accuracy of ex vivo MRI for human atherosclerotic plaque characterization.  Arterioscler Thromb Vasc Biol. 1999;  19 2756-2561
  • 28 Koktzoglou I, Chung Y C, Mani V. et al . Multislice dark-blood carotid artery wall imaging: a 1.5 T and 3.0 T comparison.  J Magn Reson Imaging. 2006;  23 699-705
  • 29 Yarnykh V L, Terashima M, Hayes C E. et al . Multicontrast black-blood MRI of carotid arteries: comparison between 1.5 and 3 tesla magnetic field strengths.  J Magn Reson Imaging. 2006;  23 691-968
  • 30 Yarnykh V L, Yuan C. T1-insensitive flow suppression using quadruple inversion-recovery.  Magn Reson Med. 2002;  48 899-905
  • 31 Yarnykh V L, Yuan C. Multislice double inversion-recovery black-blood imaging with simultaneous slice reinversion.  J Magn Reson Imaging. 2003;  17 478-483
  • 32 Yuan C, Zhao X Q, Hatsukami T S. Quantitative evaluation of carotid atherosclerotic plaques by magnetic resonance imaging.  Curr Atheroscler Rep. 2002;  4 351-357
  • 33 Kim W Y, Danias P G, Stuber M. et al . Coronary magnetic resonance angiography for the detection of coronary stenoses.  N Engl J Med. 2001;  345 1863-1869
  • 34 Ropers D, Regenfus M, Wasmeier G. et al . Non-interventional cardiac diagnostics: computed tomography, magnetic resonance and real-time three-dimensional echocardiography. Techniques and clinical applications.  Minerva Cardioangiol. 2004;  52 407-417
  • 35 Deshpande V S, Shea S M, Laub G. et al . 3D magnetization-prepared true-FISP: a new technique for imaging coronary arteries.  Magn Reson Med. 2001;  46 494-502
  • 36 Bornert P, Stuber M, Botnar R M. et al . Direct comparison of 3D spiral vs. Cartesian gradient-echo coronary magnetic resonance angiography.  Magn Reson Med. 2001;  46 789-794
  • 37 Katoh M, Stuber M, Buecker A. et al . Spin-labeling coronary MR angiography with steady-state free precession and radial k-space sampling: initial results in healthy volunteers.  Radiology. 2005;  236 1047-1052
  • 38 Yuan C, Kerwin W S, Yarnykh V L. et al . MRI of atherosclerosis in clinical trials.  NMR Biomed. 2006;  19 636-654
  • 39 Yarnykh V L, Yuan C. Comparison of 2D and 3D black-blood techniques for high-resolution T 1-weighted imaging of carotid arteries.  Proceedings of the 11th Annual Meeting of ISMRM, Toronto, Canada. 2003;  1632
  • 40 Yuan C, Petty C, O’Brien K D. et al . In vitro and in situ magnetic resonance imaging signal features of atherosclerotic plaque-associated lipids.  Arterioscler Thromb Vasc Biol. 1997;  17 1496-1503
  • 41 Mani V, Itskovich V V, Aguiar S H. et al . Comparison of gated and non-gated fast multislice black-blood carotid imaging using rapid extended coverage and inflow/outflow saturation techniques.  J Magn Reson Imaging. 2005;  22 628-633
  • 42 Luo Y, Polissar N, Han C. et al . Accuracy and uniqueness of three in vivo measurements of atherosclerotic carotid plaque morphology with black blood MRI.  Magn Reson Med. 2003;  50 75-82
  • 43 Kang X, Polissar N L, Han C. et al . Analysis of the measurement precision of arterial lumen and wall areas using high-resolution MRI.  Magn Reson Med. 2000;  44 968-972
  • 44 Eubank W B, Yuan C, Fisher E R. et al . Endarterectomy specimen shrinkage: Comparison of T 2-weighted MR imaging of specimen ex vivo to histological process.  J of Vasc Investigation. 1998;  4 147-152
  • 45 Kolodgie F D, Gold H K, Burke A P. et al . Intraplaque hemorrhage and progression of coronary atheroma.  N Engl J Med. 2003;  349 2316-2325
  • 46 Chu B, Kampschulte A, Ferguson M S. et al . Hemorrhage in the Atherosclerotic Carotid Plaque: A High-Resolution MRI Study.  Stroke. 2004;  35 1079-1084
  • 47 Moody A R, Murphy R E, Morgan P S. et al . Characterization of complicated carotid plaque with magnetic resonance direct thrombus imaging in patients with cerebral ischemia.  Circulation. 2003;  107 3047-3052
  • 48 Cappendijk V C, Cleutjens K B, Heeneman S. et al . In vivo detection of hemorrhage in human atherosclerotic plaques with magnetic resonance imaging.  J Magn Reson Imaging. 2004;  20 105-110
  • 49 Takaya N, Yuan C, Chu B. et al . Presence of intraplaque hemorrhage stimulates progression of carotid atherosclerotic plaques: a high-resolution magnetic resonance imaging study.  Circulation. 2005;  111 2768-2775
  • 50 Kampschulte A, Ferguson M S, Kerwin W S. et al . Differentiation of intraplaque versus juxtaluminal hemorrhage/thrombus in advanced human carotid atherosclerotic lesions by in vivo magnetic resonance imaging.  Circulation. 2004;  110 3239-3244
  • 51 Kolodgie F D, Burke A P, Farb A. et al . The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes.  Curr Opin Cardiol. 2001;  16 285-292
  • 52 Kolodgie F D, Virmani R, Burke A P. et al . Pathologic assessment of the vulnerable human coronary plaque.  Heart. 2004;  90 1385-1391
  • 53 Redgrave J N, Lovett J K, Gallagher P J. et al . Histological assessment of 526 symptomatic carotid plaques in relation to the nature and timing of ischemic symptoms: the Oxford plaque study.  Circulation. 2006;  113 2320-2328
  • 54 Devuyst G, Karapanayiotides T, Ruchat P. et al . Ultrasound measurement of the fibrous cap in symptomatic and asymptomatic atheromatous carotid plaques.  Circulation. 2005;  111 2776-2782
  • 55 Yuan C, Zhang S X, Polissar N L. et al . Identification of fibrous cap rupture with magnetic resonance imaging is highly associated with recent transient ischemic attack or stroke.  Circulation. 2002;  105 181-185
  • 56 Chu B, Yuan C, Takaya N. et al . Images in cardiovascular medicine. Serial high-spatial-resolution, multisequence magnetic resonance imaging studies identify fibrous cap rupture and penetrating ulcer into carotid atherosclerotic plaque.  Circulation. 2006;  113 e660-e661
  • 57 Hansson G K. Inflammation, atherosclerosis, and coronary artery disease.  N Engl J Med. 2005;  352 1685-1695
  • 58 Kerwin W, Hooker A, Spilker M. et al . Quantitative magnetic resonance imaging analysis of neovasculature volume in carotid atherosclerotic plaque.  Circulation. 2003;  107 851-856
  • 59 Kerwin W S, O’Brien K D, Ferguson M S. et al . Inflammation in carotid atherosclerotic plaque: a dynamic contrast-enhanced MR imaging study.  Radiology. 2006;  241 459-468
  • 60 Saam T, Yuan C, Chu B. et al . Predictors of carotid atherosclerotic plaque progression as measured by noninvasive magnetic resonance imaging.  Atherosclerosis. 2007;  194 e34-e42
  • 61 Corti R, Fuster V, Fayad Z A. et al . Lipid lowering by simvastatin induces regression of human atherosclerotic lesions: two years’ follow-up by high-resolution noninvasive magnetic resonance imaging.  Circulation. 2002;  106 2884-2887
  • 62 Zhao X Q, Yuan C, Hatsukami T S. et al . Effects of prolonged intensive lipid-lowering therapy on the characteristics of carotid atherosclerotic plaques in vivo by MRI: a case-control study.  Arterioscler Thromb Vasc Biol. 2001;  21 1623-1629
  • 63 Saam T, Cai J M, Cai Y Q. et al . Carotid plaque composition differs between ethno-racial groups: an MRI pilot study comparing mainland Chinese and American Caucasian patients.  Arterioscler Thromb Vasc Biol. 2005;  25 611-616
  • 64 Saam T, Cai J, Ma L. et al . Comparison of symptomatic and asymptomatic atherosclerotic carotid plaque features with in vivo MR imaging.  Radiology. 2006;  240 464-472
  • 65 Takaya N, Yuan C, Chu B. et al . Association between carotid plaque characteristics and subsequent ischemic cerebrovascular events: a prospective assessment with MRI - initial results.  Stroke. 2006;  37 818-823
  • 66 Schmitz S A, Taupitz M, Wagner S. et al . Magnetic resonance imaging of atherosclerotic plaques using superparamagnetic iron oxide particles.  J Magn Reson Imaging. 2001;  14 355-361
  • 67 Ruehm S G, Corot C, Vogt P. et al . Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits.  Circulation. 2001;  103 415-422
  • 68 Tang T, Howarth S P, Miller S R. et al . Assessment of inflammatory burden contralateral to the symptomatic carotid stenosis using high-resolution ultrasmall, superparamagnetic iron oxide-enhanced MRI.  Stroke. 2006;  37 2266-2270
  • 69 Wentzel J J, Aguiar S H, Fayad Z A. Vascular MRI in the diagnosis and therapy of the high risk atherosclerotic plaque.  J Interv Cardiol. 2003;  16 129-142
  • 70 Yu X, Song S K, Chen J. et al . High-resolution MRI characterization of human thrombus using a novel fibrin-targeted paramagnetic nanoparticle contrast agent.  Magn Reson Med. 2000;  44 867-872
  • 71 Flacke S, Fischer S, Scott M J. et al . Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques.  Circulation. 2001;  104 1280-1285
  • 72 Botnar R M, Perez A S, Witte S. et al . In vivo molecular imaging of acute and subacute thrombosis using a fibrin-binding magnetic resonance imaging contrast agent.  Circulation. 2004;  109 2023-2029
  • 73 Botnar R M, Buecker A, Wiethoff A J. et al . In vivo magnetic resonance imaging of coronary thrombosis using a fibrin-binding molecular magnetic resonance contrast agent.  Circulation. 2004;  110 1463-1466
  • 74 Spuentrup E, Buecker A, Katoh M. et al . Molecular magnetic resonance imaging of coronary thrombosis and pulmonary emboli with a novel fibrin-targeted contrast agent.  Circulation. 2005;  111 1377-1382
  • 75 Fenchel M, Jost D, Kramer U. et al . Cardiovascular whole-body MR imaging in patients with symptomatic peripheral arterial occlusive disease.  Fortschr Röntgenstr. 2006;  178 491-499
  • 76 Neff K W, Kilian A K, Meairs S. et al . Correlation of duplex sonographic stenosis grading by means of cross-sectional analysis and MR-tomographic blood volume flow quantification in unilateral stenosis of the internal carotid artery.  Fortschr Röntgenstr. 2005;  177 992-999
  • 77 Busch S, Johnson T R, Nikolaou K. et al . Visual and automatic grading of coronary artery stenoses with 64-slice CT angiography in reference to invasive angiography.  Eur Radiol. 2007;  17 1445-1451
  • 78 Nikolaou K, Knez A, Rist C. et al . Accuracy of 64-MDCT in the diagnosis of ischemic heart disease.  Am J Roentgenol. 2006;  187 111-117
  • 79 Nikolaou K, Becker C R, Muders M. et al . Multidetector-row computed tomography and magnetic resonance imaging of atherosclerotic lesions in human ex vivo coronary arteries.  Atherosclerosis. 2004;  174 243-252
  • 80 Leber A W, Knez A, Ziegler von F. et al . Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound.  J Am Coll Cardiol. 2005;  46 147-154
  • 81 Becker C R, Knez A, Leber A. et al . Initial experiences with multi-slice detector spiral CT in diagnosis of arteriosclerosis of coronary vessels.  Radiologe. 2000;  40 118-122
  • 82 Gronholdt M L, Nordestgaard B G, Schroeder T V. et al . Ultrasonic echolucent carotid plaques predict future strokes.  Circulation. 2001;  104 68-73
  • 83 Nissen S E, Tsunoda T, Tuzcu E M. et al . Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial.  JAMA. 2003;  290 2292-2300
  • 84 Nissen S E, Tuzcu E M, Schoenhagen P. et al . Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial.  JAMA. 2004;  291 1071-1080
  • 85 Meissner O A, Rieber J, Babaryka G. et al . Intravascular optical coherence tomography: differentiation of atherosclerotic plaques and quantification of vessel dimensions in crural arterial specimens.  Fortschr Röntgenstr. 2006;  178 214-220
  • 86 Toussaint J F, LaMuraglia G M, Southern J F. et al . Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo.  Circulation. 1996;  94 932-938
  • 87 Serfaty J M, Chaabane L, Tabib A. et al . Atherosclerotic plaques: classification and characterization with T 2-weighted high-spatial-resolution MR imaging - an in vitro study.  Radiology. 2001;  219 403-410

Dr. Tobias Saam

Institut für Klinische Radiologie, Ludwig-Maximilians-Universität München

Marchioninistr. 15

81377 München

Phone: ++ 49/89/70 95 36 20

Fax: ++ 49/89/70 95 88 32

Email: Tobias.Saam@med.uni-muenchen.de