Subscribe to RSS
DOI: 10.1055/s-2007-968032
Octanol-Accelerated Baylis-Hillman Reaction
Publication History
Publication Date:
07 February 2007 (online)
Abstract
The Baylis-Hillman reaction was greatly accelerated by use of octanol as an additive. Under the octanol-accelerated Baylis-Hillman conditions, unactivated aldehydes such as aliphatic aldehydes and aromatic aldehydes with electron-withdrawing substituents were readily converted into the desired products in good to high yields.
Key words
Baylis-Hillman reaction - octanol - additive - rate acceleration - aliphatic aldehydes
-
1a
Basavaiah D.Rao PD.Hyma RS. Tetrahedron 1996, 52: 8001 -
1b
Ciganek E. Org. React. 1997, 51: 201 -
1c
Langer P. Angew. Chem. Int. Ed. 2000, 39: 3049 -
1d
Basavaiah D.Rao AJ.Satyanayana T. Chem. Rev. 2003, 103: 811 -
2a
Kataoka T.Kinoshita H.Kinoshita S.Iwamura T.Watanabe S. Angew. Chem. Int. Ed. 2000, 39: 2358 -
2b
Shi M.Jiang J.-K.Feng YS. Org. Lett. 2000, 2: 2397 -
2c
Shi M.Jiang JK. Tetrahedron 2000, 56: 4793 -
2d
Li G.Wei HX.Gao JJ.Caputo TD. Tetrahedron Lett. 2000, 41: 1 -
2e
Shi M.Feng YS. J. Org. Chem. 2001, 66: 406 -
2f
Shi M.Jiang J.-K.Cui S.-C. Tetrahedron 2001, 57: 7343 -
2g
Patra A.Batra S.Joshi BS.Roy R.Kundu B.Bhaduri AP. J. Org. Chem. 2002, 67: 5783 -
2h
Basavaiah D.Sreenivasulu B.Rao AJ. J. Org. Chem. 2003, 68: 5983 -
2i
Pei W.Wei H.Li G. Chem. Commun. 2002, 1856 -
2j
Pei W.Wei H.Li G. Chem. Commun. 2002, 2412 -
2k
Kinoshita H.Kinoshita S.Munechika Y.Iwamura T.Watanabe S.Kataoka T. Eur. J. Org. Chem. 2003, 4852 -
2l
Kinoshita H.Osamura T.Kinoshita S.Iwamura T.Watanabe S.Kataoka T.Tanabe G.Muraoka O. J. Org. Chem. 2003, 68: 7532 - 3
Kundu MK.Mukherjee SB.Balu N.Padmakumar R.Bhat SV. Synlett 1994, 444 -
4a
Drewes SE.Roos GHP. Tetrahedron 1988, 44: 4653 -
4b
Basavaiah D.Dharma Rao P.Suguna Hyma R. Tetrahedron 1996, 52: 8001 -
4c
Ciganek E. In Organic Reactions Vol. 51:Paquette LA. Wiley; New York: 1997. p.201 -
5a
Ameer F.Drewes SE.Freese S.Kaye PT. Synth. Commun. 1988, 18: 495 -
5b
Drewes SE.Freese S.Emslie ND.Roos GHP. Synth. Commun. 1988, 18: 1565 -
5c
Basavaiah D.Sarma PKS. Synth. Commun. 1990, 20: 1611 -
5d
Bailey M.Marko IE.Ollis WD.Rasmussen PR. Tetrahedron Lett. 1990, 31: 4509 - 6
Auge J.Lubin N.Lubineau A. Tetrahedron Lett. 1994, 35: 7947 -
7a
Almeida WP.Coelho F. Tetrahedron Lett. 1998, 39: 8609 -
7b
Coelho F.Almeida WP.Veronese D.Mateus CR.Silva Lopes EC.Rossi RC.Silveira GPC.Pavam CH. Tetrahedron 2002, 58: 7437 -
8a
Hill JS.Isaacs NS. Tetrahedron Lett. 1986, 27: 5007 -
8b
Hill JS.Isaacs NS. J. Chem. Res., Synop. 1988, 330 -
8c
Schuurman RJW.v. d. Linden A.Grimbergen RPF.Nolte RJM.Scheeren HW. Tetrahedron 1996, 52: 8307 - 9
Shi M.Liu Y.-H. Org. Biomol. Chem. 2006, 4: 1468 - 10
Aggarwal VK.Fulford SY.Lloyd-Jones GC. Angew. Chem. Int. Ed. 2005, 44: 1706 - 12
MacCallum JL.Tieleman DP. J. Am. Chem. Soc. 2002, 124: 15085
References and Notes
Spectroscopic Data for Compound 4.
IR (neat): 3415, 1665, 1635, 1088 cm-1. 1H NMR (400 MHz, CDCl3): δ = 1.32 (d, J = 6.5 Hz, 3 H), 2.36 (s, 3 H), 3.31 (br s, 1 H), 4.66 (br s, 1 H), 6.08 (s, 1 H), 6.11 (s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 200.19, 151.09, 124.27, 65.89, 25.90, 21.76. HRMS (ESI): m/z calcd for C6H10O2 [M + H]: 114.0681; found: 114.0685.
Spectroscopic Data for Compound 6.
1H NMR (400 MHz, CDCl3): δ = 6.04 (s, 1 H), 5.85 (s, 1 H), 2.61-2.57 (m, 1 H), 2.55-2.50 (m, 1 H), 2.34 (s, 3 H), 2.13 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 207.59, 199.24, 147.52, 126.01, 42.20, 29.47, 25.61, 25.05.