References and Notes
For reviews on β-lactam antibiotics, see:
1a
Durkheimer W.
Blumbatch J.
Lattrell R.
Scheunemann KH.
Angew. Chem., Int. Ed. Engl.
1985,
24:
180
1b
Chemistry and Biology of β-Lactam Antibiotics
Vol. 1:
Morin RB.
Gorman M.
Academic Press;
New York:
1982.
1c
Chemistry and Biology of β-Lactam Antibiotics
Vol. 2:
Morin RB.
Gorman M.
Academic Press;
New York:
1982.
1d
Chemistry and Biology of β-Lactam Antibiotics
Vol. 3:
Morin RB.
Gorman M.
Academic Press;
New York:
1982.
1e
Coulton S.
Hunt E. In Recent Progress in the Chemical Synthesis of Antibiotics and Related Microbial Products
Vol. 2:
Lukacs G.
Springer-Verlag;
Berlin:
1993.
p.621
1f
Southgate R.
Contemp. Org. Synth.
1994,
1:
417
1g
The Chemistry of β-Lactams
Page MI.
Chapman and Hall;
London:
1992.
2
Rothstein JD.
Patel S.
Regan MR.
Haenggelli C.
Huang YH.
Bergles DE.
Jin L.
Hoberg MD.
Vidensky S.
Chung DS.
Toan SV.
Bruijn LI.
Su Z.-Z.
Gupta P.
Fisher PB.
Nature (London)
2005,
433:
73
3a
Burnett DA.
Caplen MA.
Davis HR.
Burrie RE.
Clader JW.
J. Med. Chem.
1994,
37:
1733
3b
Dugar S.
Yumibe N.
Clader JW.
Vizziano M.
Huie K.
van Heek M.
Compton DS.
Davis HR.
Bioorg. Med. Chem. Lett.
1996,
6:
1271
3c
Wu GG.
Process Res. Det.
2004,
4:
298
4
Han WT.
Trehan AK.
Wright JJK.
Federici ME.
Seiler SM.
Meanwell NA.
Bioorg. Med. Chem.
1995,
3:
1123
5
Borthwick AD.
Weingarten G.
Haley TM.
Tomaszewski M.
Wang W.
Hu Z.
Bedard J.
Jin H.
Yuen L.
Mansour TS.
Bioorg. Med. Chem. Lett.
1998,
8:
365
6
Cainelli G.
Galletti P.
Garbisa S.
Giacomini D.
Sartor L.
Quintavalla A.
Bioorg. Med. Chem.
2003,
11:
5391
7a
Doherty JB.
Ashe BM.
Agrenbright LW.
Baker PL.
Bonney RJ.
Chandler GO.
Dahlgren ME.
Dorn CP.
Finke PE.
Firestone RA.
Fletcher D.
Hagemann WK.
Munford R.
O’Grady L.
Maycock AL.
Pisano JM.
Shah SK.
Thompson KR.
Zimmerman M.
Nature (London)
1986,
322:
192
7b
Cvetovich RJ.
Chartran M.
Hartner FW.
Roberge C.
Amato JS.
Grabowski EJ.
J. Org. Chem.
1996,
61:
6575
8a
Zhou NE.
Guo D.
Thomas G.
Reddy AVN.
Kaleta J.
Purisima E.
Menard R.
Micetich RG.
Singh R.
Bioorg. Med. Chem. Lett.
2003,
13:
139
8b
Setti EL.
Davis D.
Chung T.
McCarter J.
Bioorg. Med. Chem. Lett.
2001,
11:
2051
9a
Smith DM.
Kazi A.
Smith L.
Long TE.
Heldreth B.
Turos E.
Dou QP.
Mol. Pharmacol.
2002,
61:
1348
9b
Kazi A.
Hill R.
Long TE.
Kuhn DJ.
Turos E.
Dou QP.
Biochem. Pharmacol.
2004,
67:
365
10a
Alonso E.
Lopez-Ortiz F.
del Pozo C.
Peratta E.
Macias A.
Gonzalez J.
J. Org. Chem.
2001,
66:
6333
10b
Bittermann H.
Gmeiner P.
J. Org. Chem.
2006,
71:
97
11
Alonso E.
del Pozo C.
Gonzalez J.
Synlett
2002,
69
12a
Broccolo F.
Carnally G.
Caltabiano G.
Cocuzza CEA.
Fortuna CG.
Galletti P.
Giacomini D.
Musumarra G.
Musumeci R.
Quitavalla A.
J. Med. Chem.
2006,
49:
2804
12b
Alcaide B.
Almendros P.
Curr. Med. Chem.
2004,
11:
1921
12c
Deshmukh ARAS.
Bhawal BM.
Krishnaswamy D.
Govande VV.
Shinkre BA.
Jayanthi A.
Curr. Med. Chem.
2004,
11:
1889
12d
Singh GS.
Tetrahedron
2003,
59:
7631
12e
Alcaide B.
Almendros P.
Synlett
2002,
381
12f
Palomo C.
Aizpurua JM.
Ganboa I.
Oiarbid M.
Synlett
2001,
1813
12g
Palomo C.
Aizpurua JM.
Ganboa I.
Oiarbid M. In
Enantioselective Synthesis of β-Amino Acids
Juaristi E.
Wiley-VCH;
New York:
1997.
p.279
13
Palomo C.
Aizpurua JM.
Urchegui R.
Garcia JM.
J. Chem. Soc., Chem. Commun.
1995,
2327
14a
Jayaraman M.
Manhas MS.
Bose AK.
Tetrahedron Lett.
1997,
38:
709
14b
Kant J.
Schwartz WS.
Fairchild C.
Gao Q.
Huang S.
Long BH.
Kadow JF.
Langley DR.
Farina V.
Vyas D.
Tetrahedron Lett.
1996,
37:
6495
14c
Palomo C.
Aizpurua JM.
Lopez MC.
Aurrekoetxea N.
Oiarbide M.
Tetrahedron Lett.
1990,
31:
6425
14d
Palomo C.
Aizpurua JM.
Cossio FP.
Garcia JM.
Lopez MC.
Oiarbide M.
J. Org. Chem.
1990,
55:
2070
14e
Palomo C.
Aizpurua JM.
Lopez MC.
Aurrekoetxea N.
Oiarbide M.
Tetrahedron Lett.
1990,
31:
2205
14f
Tiwari DK.
Gumaste VK.
Deshmukh ARAS.
Synthesis
2006,
115
15a
Palomo C.
Aizpurua JM.
Ganboa I.
Odriozola B.
Maneiro E.
Miranda JI.
Urchegui R.
Chem. Commun.
1996,
161
15b
Palomo C.
Aizpurua JM.
Ganboa I.
Carreaux F.
Cuevas C.
Maneiro E.
Ontoria JM.
J. Org. Chem.
1994,
59:
3123
16
Alcaide B.
Almendros P.
Aragoncillo C.
Chem. Commun.
2000,
757
17
Cossio FP.
Lopez C.
Oiarbide M.
Palomo C.
Apariocio D.
Rubiales G.
Tetrahedron Lett.
1988,
29:
3133
18
Cossio FP.
Ganboa I.
Garcia JM.
Lecea B.
Palomo C.
Tetrahedron Lett.
1987,
28:
1945
19a
Manhas MS.
Bari SS.
Bhawal BM.
Bose AK.
Tetrahedron Lett.
1984,
25:
4733
19b
Van der Veen JM.
Bari SS.
Krishnan L.
Manhas MS.
Bose AK.
J. Org. Chem.
1989,
54:
5758
20a
Tufariello JJ.
Pinto DJP.
Milowsky AS.
Reinhardt DV.
Tetrahedron Lett.
1987,
28:
5481
20b
Lysek R.
Lipkowska ZU.
Chmielewski M.
Tetrahedron
2001,
57:
1301
20c
Danh TT.
Borsuk K.
Solecka J.
Chmielewski M.
Tetrahedron
2006,
62:
10928
21
Kai H.
Orita A.
Murai S.
Synth. Commun.
1998,
28:
1989
22a
Burnett DA.
Caplen MA.
Davis HR.
Burrier RE.
Clader JW.
J. Med. Chem.
1994,
37:
1733
22b
Burnett DA.
Tetrahedron Lett.
1994,
37:
7339
23
Carmack M.
Kelly CJ.
J. Org. Chem.
1968,
33:
2171
24
Typical Procedure for Spiro-β-lactams 5a and 6a: A solution of acid chloride 3 (0.371 g, 1.84 mmol) in anhyd dichloromethane (10 mL) was added dropwise over a period of 20-30 min to a solution of imine 4a (0.296 g, 1.23 mmol) and triethyl amine (0.77 mL, 5.53 mmol) in anhyd dichloromethane (20 mL) at -40 °C. After the addition was complete the solution was allowed to attain r.t. and stirred for 15 h (TLC). The reaction mixture was then diluted with dichloromethane and washed with H2O (2 × 10 mL) and sat. brine solution (10 mL). The combined organic layer was dried over anhyd Na2SO4, filtered and concentrated under reduced pressure to get the crude diastereomeric mixture of 5a and 6a (0.480 g, 70%). 1H NMR of the crude product showed a 60:40 mixture of diastereomers which were separated by careful flash column chromatography [PE-EtOAc (8:2)].
(3
S
,4
S
,8
R
)-1,2-Bis(4-methoxyphenyl)-6,6-dimethyl-3-oxo-5,7-dioxa-2-azaspiro[3.4]octane-8-carboxylic Acid Ethyl Ester (
5a): yield: 42%; colorless crystals; mp 163-164 °C; [α]D
26 +1.4 (c = 2.7, CHCl3). IR (CHCl3): 1751, 1755 cm-1. 1H NMR (200 MHz, CDCl3): δ = 1.04 (s, 3 H, Me), 1.12 (t, J = 7.2 Hz, 3 H, OCH2CH
3), 1.60 (s, 3 H, Me), 3.74 (s, 3 H, Me), 3.81 (s, 3 H, Me), 4.16-4.29 (m, 2 H, OCH2), 5.02 (s, 1 H, C8-H), 5.19 (s, 1 H, C3-H), 6.79 (d, J = 8.9 Hz, 2 H, ArH), 6.91 (d, J = 8.9 Hz, 2 H, ArH), 7.25-7.31 (m, 4 H, ArH). 13C NMR (50 MHz, CDCl3): δ = 13.7, 25.6, 26.5, 55.1, 55.2, 61.8, 68.0, 78.1, 92.5, 113.6, 113.9, 114.1, 118.7, 124.9, 129.2, 130.3, 156.2, 159.8, 163.3, 167.9. MS: m/z = 442 [M + 1]. Anal. Calcd for C24H27NO7: C, 65.29; H, 6.16; N, 3.17. Found: C, 65.18; H, 6.29; N, 3.03.
(3
R
,4
R
,8
R
)-1,2-Bis(4-methoxyphenyl)-6,6-dimethyl-3-oxo-5,7-dioxa-2-azaspiro[3.4]octane-8-carboxylic Acid Ethyl Ester (
6a): yield: 28%; brown viscous liquid; [α]D
26 -7.0 (c = 2.8, CHCl3). IR (CHCl3): 1751, 1755 cm-1. 1H NMR (200 MHz, CDCl3): δ = 1.06 (s, 3 H, Me), 1.11 (t, J = 7.2 Hz, 3 H, OCH2CH
3), 1.47 (s, 3 H, Me), 3.75 (s, 3 H, Me), 3.80 (s, 3 H, Me), 4.18-4.30 (m, 2 H, OCH
2CH3), 4.87 (s, 1 H, C3-H), 5.03 (s, 1 H, C8-H), 6.79 (d, J = 9.0 Hz, 2 H, ArH), 6.87 (d, J = 9.0 Hz, 2 H, ArH), 7.25-7.30 (m, 4 H, ArH). 13C NMR (50 MHz, CDCl3): δ = 13.8, 25.6, 26.1, 55.0, 55.2, 61.7, 65.7, 77.0, 90.9, 113.1, 113.7, 114.2, 118.7, 124.5, 129.1, 130.3, 156.3, 159.7, 163.4, 167.6. MS: m/z = 442 [M + 1]. Anal. Calcd for C24H27NO7: C, 65.29; H, 6.16; N, 3.17. Found: C, 65.42; H, 6.10; N, 3.25.
Typical Procedure for Diol 7a: To a solution of spiro-β-lactam 5a (0.200 g, 0.453 mmol) in dichloromethane (10 mL) was added anhyd FeCl3 (0.147 g, 0.907 mmol) at r.t. and stirred for 2 h. After completion of the reaction (TLC) the reaction mixture was passed through a celite bed. The filtrate was concentrated in vacuo to get the crude diol 7a. The crude product was purified by column chromatography [PE-EtOAc (3:2)] to obtain pure diol 7a (0.162 g, 89%).
(3
S
,4
S
)-Hydroxy-[3-hydroxy-1,2-bis(4-methoxyphenyl)-4-oxoazetidin-3-yl]acetic Acid Ethyl Ester (
7a): yield: 89%; thick brown oil; [α]D
26 +20 (c = 1.1, CHCl3). IR (CHCl3): 1731, 1735, 3377 cm-1. 1H NMR (200 MHz, CDCl3): δ = 1.29 (t, J = 7.1 Hz, 3 H, OCH2CH
3), 2.05 (s, 2 H, OH), 3.75 (s, 3 H, OMe), 3.80 (s, 3 H, OMe), 4.32 (quart, J = 7.1 Hz, 2 H, OCH
2CH3), 5.27 (s, 1 H, CHCOOEt), 5.30 (s, 1 H, C4-H), 6.79 (d, J = 9.0 Hz, 2 H, ArH), 6.91 (d, J = 8.9 Hz, 2 H, ArH), 7.21-7.30 (m, 4 H, ArH). 13C NMR (50 MHz, CDCl3): δ = 13.9, 55.1, 55.3, 62.3, 63.3, 71.0, 86.3, 114.1, 119.0, 124.5, 129.0, 130.0, 156.3, 159.8, 164.2, 171.5. MS: m/z = 402 [M + 1]. Anal. Calcd for C21H23NO7: C, 62.83; H, 5.78; N, 3.49. Found: C, 62.72; H, 5.94; N, 3.60.
(3
R
,4
R
)-Hydroxy-[3-hydroxy-1,2-bis(4-methoxyphenyl)-4-oxo-azetidin-3-yl]acetic Acid Ethyl Ester (
8a): yield: 88%; thick brown oil; [α]D
26 -25.6 (c = 2.5, CHCl3). IR (CHCl3): 1731, 1737, 3371 cm-1. 1H NMR (200 MHz, CDCl3): δ = 1.26 (t, J = 7.2 Hz, 3 H, OCH2CH
3), 2.04 (s, 2 H, OH), 3.74 (s, 3 H, OMe), 3.79 (s, 3 H, OMe), 4.30 (quart, J = 7.2 Hz, 2 H, OCH
2CH3), 4.63 (s, 1 H, C4-H), 5.30 (s, 1 H, CHCOOEt), 6.78 (d, J = 9.1 Hz, 2 H, ArH), 6.91 (d, J = 8.9 Hz, 2 H, ArH), 7.23-7.30 (m, 4 H, ArH). 13C NMR (50 MHz, CDCl3): δ = 13.5, 55.2, 55.3, 61.9, 63.2, 71.1, 86.8, 114.1, 119.2, 124.5, 129.1, 130.0, 156.9, 159.7, 164.3, 171.5. MS: m/z = 402 [M + 1]. Anal. Calcd for C21H23NO7: C, 62.83; H, 5.78; N, 3.49. Found: C, 62.75; H, 5.69; N, 3.32.
Typical Procedure for Dione 9a: To a solution of diol 7a (0.105 g, 0.261 mmol) in acetone-water (2:1, 6 mL) was added powdered NaIO4 and the solution was stirred for 6-8 h. After completion of the reaction (TLC), the reaction mixture was filtered through a Büchner funnel and the residue was washed with acetone (5 mL). The combined filtrates were evaporated in vacuo to remove acetone. The residue was extracted with dichloromethane (3 × 10 mL). The combined organic extracts were washed with brine (10 mL), dried over Na2SO4 and concentrated under reduced pressure to get the crude dione 9a as a yellow solid. The crude product was purified by column chromatography [PE-EtOAc (8:2)] to get pure dione 9a as a yellow solid (0.065 g, 84%).
(4
S
)-1,4-Bis(4-methoxyphenyl)azetidine-2,3-dione (
9a): yield: 84%; yellow solid; mp 144 °C; [α]D
26 +53.3 (c = 0.9, CHCl3). IR (CHCl3): 1755, 1809, 1832 cm-1. 1H NMR (200 MHz, CDCl3): δ = 3.79 (s, 3 H, OMe), 3.80 (s, 3 H, OMe), 5.51 (s, 1 H, C4-H), 6.85-6.94 (m, 4 H, ArH), 7.24 (d, J = 9.3 Hz, 2 H, ArH), 7.46 (d, J = 9.1 Hz, 2 H, ArH). 13C NMR (50 MHz, CDCl3): δ = 55.2, 55.4, 74.4, 114.6, 114.8, 119.6, 123.5, 127.7, 129.8, 157.8, 160.1, 160.8, 191.1. MS: m/z = 298 [M + 1]. Anal. Calcd for C17H15NO4: C, 68.68; H, 5.09; N, 4.71. Found: C, 68.85; H, 5.19; N, 4.62.
(4
R
)-1,4-Bis(4-methoxyphenyl)azetidine-2,3-dione (
10a): yield: 85%; [α]D
26 -54.6 (c = 1.5, CHCl3). The spectral data of 10a was identical to that of 9a. Anal. Calcd for C17H15NO4: C, 68.68; H, 5.09; N, 4.71. Found: C, 68.50; H, 5.22; N, 4.67.
25
X-ray Data for 5a and 8b: Single crystals of the 5a and 8b were grown by slow evaporation of the solution mixture in EtOAc and PE. The X-ray data of 5a-8b were collected on a SMART APEX CCD single crystal X-ray diffractometer with omega and phi scan mode and different number of scans and exposure times for different crystals using λ(MoKα) = 0.71073 Å radiation at T = 293 (2) K with oscillation/frame = -0.3°, maximum detector swing angle = -30.0°, beam center = (260.2, 252.5), in plane spot width = 1.24. All the data were corrected for Lorentzian, polarization and absorption effects using SAINT and SADABS programs. The crystal structures were solved by direct method using SHELXS-97 and the refinement was performed by full matrix least squares of F
2 using SHELXL-97.
[33]
Crystal Data for 5a (C
24
H
27
NO
7
): M = 441.47; crystal dimensions: 0.52 × 0.47 × 0.33 mm, multirun data acquisition. Total scans = 3, total frames = 1818, exposure/frame = 10.0 s/frame, range = 1.98°-27.00°, completeness to of 27.0°: 100.0%. Crystals belonged to monoclinic, space group P21/c, a = 10.8952(5) Å, b = 23.954(1) Å, c = 9.4343(5) Å, β = 109.280(3)°, V = 2324.1(2) Å3, Z = 4, Dc
= 1.262 mg/m3, µ (MoKα) = 0.093 mm-1, T = 293(2) K, 16695 reflections measured, 4083 unique [I > 2σ(I)], R value = 0.0482, wR
2 = 0.1268. X-ray analysis revealed the stereochemistry at C(3) and C(4) positions. The supplementary crystallographic data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.uk/data_request/cif. Please quote the reference number CCDC 647625.
Crystal Data for 8b (C
20
H
21
NO
6
): M = 371.38; crystal dimensions: 0.51 × 0.11 × 0.03 mm, hemisphere data acquisition. Total scans = 3, total frames = 1271, exposure/frame = 15.0 s/frame, range = 2.07°-24.99°, completeness to of 24.99º: 99.4%. Crystals belonged to monoclinic, space group P21, a = 11.324(1) Å, b = 5.3940(7) Å, c = 15.822(2) Å, β = 98.893(3)°, V = 954.8(2) Å3, Z = 2, Dc
= 1.292 mg/m3, µ (MoKα) = 0.096 mm-1, T = 293(2) K, 4764 reflections measured, 2759 unique [I >2σ(I)], R value = 0.0696, wR
2 = 0.1552. X-ray analysis revealed the stereochemistry at C(3) and C(4) positions. The end atom C(19) had positional disorder. The supplementary crystallographic data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.uk/data_request/cif. Please quote the reference number CCDC 647624.
26
Alonso E.
del Pozo C.
Gonzalez J.
J. Chem. Soc., Perkin Trans. 1
2002,
571
27
Sen SE.
Roach SL.
Boggs JK.
Ewing GJ.
Magrath J.
J. Org. Chem.
1997,
62:
6684
28
Palomo C.
Arrieta A.
Cossio FP.
Aizpurua JM.
Mielgo A.
Aurrekoetxea N.
Tetrahedron Lett.
1990,
31:
6429
29
Srirajan V.
Deshmukh ARAS.
Bhawal BM.
Tetrahedron
1996,
52:
5585
30
Denis J.-N.
Greene AE.
Serra AA.
Luche MJ.
J. Org. Chem.
1986,
51:
46
31
Denis J.-N.
Greene AE.
Gueritte-Voegelein F.
Mangatal L.
Potier P.
J. Am. Chem. Soc.
1988,
110:
5917
32
Mishra RK.
Coates CM.
Revell KD.
Turos E.
Org. Lett.
2007,
9:
575
33
Sheldrick GM.
SHELX-97: Program for Crystal Structure Solution and Refinement
University of Göttingen;
Germany:
1997.