Int J Sports Med 2008; 29(9): 753-757
DOI: 10.1055/s-2007-989441
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Allometric Scaling of Uphill Cycling Performance

S. A. Jobson1 , J. Woodside2 , L. Passfield3 , A. M. Nevill4
  • 1Department of Sports Studies, University of Winchester, Winchester, United Kingdom
  • 2School of Applied Sciences, University of Glamorgan, Pontypridd, United Kingdom
  • 3Centre for Sports Studies, University of Kent, Chatham, United Kingdom
  • 4School of Sport, Performing Arts and Leisure, University of Wolverhampton, Wolverhampton, United Kingdom
Further Information

Publication History

accepted after revision November 27, 2007

Publication Date:
22 January 2008 (online)

Abstract

Previous laboratory-based investigations have identified optimal body mass scaling exponents in the range 0.79 – 0.91 for uphill cycling. The purpose of this investigation was to evaluate whether or not these exponents are also valid in a field setting. A proportional allometric model was used to predict the optimal power-to-mass ratios associated with road-based uphill time-trial cycling performance. The optimal power function models predicting mean cycle speed during a 5.3 km, 5.4 % road hill-climb time-trial were (V˙O2max · m−1.24)0.55 and (RMPmax · m−1.04)0.54, explained variance being 84.6 % and 70.5 %, respectively. Slightly higher mass exponents were observed when the mass predictor was replaced with the combined mass of cyclist and equipment (mC). Uphill cycling speed was proportional to (V˙O2max · mC −1.33)0.57 and (RMPmax · mC −1.10)0.59. The curvilinear exponents, 0.54 – 0.59, identified a relatively strong curvilinear relationship between cycling speed and energy cost, suggesting that air resistance remains influential when cycling up a gradient of 5.4 %. These results provide some support for previously reported uphill cycling mass exponents derived in laboratories. However, the exponents reported here were a little higher than those reported previously, a finding possibly explained by a lack of geometric similarity in this sample.

References

  • 1 Alexander R M. Principles of Animal Locomotion. Princeton, USA; Princeton University Press 2003
  • 2 Cooper S-M, Baker J, Callard V. Differences in maximal exercise performance and leg morphology in female university standard field hockey players.  J Hum Mov Stud. 2003;  45 291-312
  • 3 Davison R CR, Swan D, Coleman D, Bird S. Correlates of simulated hill climb cycling performance.  J Sports Sci. 2000;  18 105-110
  • 4 di Prampero P E, Cortilli G, Mognoni P, Saibene F. Equation of motion of a cyclist.  J Appl Physiol. 1979;  47 201-206
  • 5 Heil D P. Scaling of submaximal oxygen uptake with body mass and combined mass during uphill treadmill bicycling.  J Appl Physiol. 1998;  85 1376-1383
  • 6 Heil D P. Body size as a determinant of the 1-h cycling record at sea level and altitude.  Eur J Appl Physiol. 2005;  93 547-554
  • 7 Heil D P, Murphy O F, Mattingly A R, Higginson B K. Prediction of uphill time-trial bicycling performance in humans with a scaling-derived protocol.  Eur J Appl Physiol. 2001;  85 374-382
  • 8 International Society for the Advancement of Kinanthropometry .International Standards for Anthropometric Assessment. Underdale, South Australia; ISAK 2001
  • 9 Jones P RM, Pearson J. Anthropometric determination of leg fat and muscle plus bone volumes in young male and female adults.  J Physiol. 1969;  204 63P-66P
  • 10 Mognoni P, di Prampero P E. Gear, inertial work and road slopes as determinants of biomechanics in cycling.  Eur J Appl Physiol. 2003;  90 372-376
  • 11 Nevill A M, Ramsbottom R, Williams C. Scaling physiological measurements for individuals of different body size.  Eur J Appl Physiol. 1992;  65 110-117
  • 12 Nevill A M, Brown D, Godfrey R, Johnson P J, Romer L, Stewart A D, Winter E M. Modeling maximum oxygen uptake of elite endurance athletes.  Med Sci Sports Exerc. 2003;  35 488-494
  • 13 Nevill A M, Markovic G, Vucetic V, Holder R. Can greater muscularity in larger individuals resolve the 3/4 power-law controversy when modelling maximum oxygen uptake?.  Ann Hum Biol. 2004;  31 436-445
  • 14 Nevill A M, Stewart A D, Olds T, Holder R. Are adult physiques geometrically similar? The dangers of allometric scaling using body mass power laws.  Am J Phys Anthropol. 2004;  124 177-182
  • 15 Nevill A M, Bate S, Holder R L. Modeling physiological and anthropometric variables known to vary with body size and other confounding variables.  Yearbk Phys Anthropol. 2005;  48 141-153
  • 16 Nevill A M, Jobson S A, Palmer G S, Olds T S. Scaling maximal oxygen uptake to predict cycling time-trial performance in the field: a non-linear approach.  Eur J Appl Physiol. 2005;  94 705-710
  • 17 Nevill A M, Jobson S A, Davison R CR, Jeukendrup A E. Optimal power-to-mass ratios when predicting flat and hill-climbing time-trial cycling.  Eur J Appl Physiol. 2006;  97 424-431
  • 18 Norton K. Anthropometric estimation of body fat. Norton K, Olds T Anthropometrica. Sydney, NSW; University of New South Wales Press 1996: 171-198
  • 19 Olds T S, Norton K I, Lowe L A, Olive S, Reay F, Ly S. Modeling road-cycling performance.  J Appl Physiol. 1995;  78 1596-1611
  • 20 Rollings A T, Porcari J P, Flowy W, Venneman M. Predictors of uphill riding performance in trained cyclists.  Med Sci Sports Exerc. 1995;  27 S238
  • 21 Ryshon T W, Stray-Gundersen J. The effect of body position on the energy cost of cycling.  Med Sci Sports Exerc. 1991;  23 949-953
  • 22 Smith M F, Davison R CR, Balmer J, Bird S R. Reliability of mean power recorded during indoor and outdoor self-paced 40 km cycling time-trials.  Int J Sports Med. 2001;  22 270-274
  • 23 Stovall K D, Swain D P, Benedetti K, Pruitt A L, Burke E R. Body mass and performance in the Tour du Pont [abstract].  Med Sci Sports Exerc. 1993;  25 S169
  • 24 Swain D P. The influence of body-mass in endurance bicycling.  Med Sci Sports Exerc. 1994;  26 58-63
  • 25 Tan F HY, Aziz A R. Reproducibility of outdoor flat and uphill cycling time trials and their performance correlates with peak power output in moderately trained cyclists.  J Sports Sci Med. 2005;  4 278-284
  • 26 Tothill P, Stewart A D. Estimation of thigh muscle and adipose tissue volume using magnetic resonance imaging and anthropometry.  J Sports Sci. 2002;  20 563-576
  • 27 Winter E M, Brookes F B, Hamley E J. Maximal exercise performance and lean leg volume in men and women.  J Sports Sci. 1991;  9 3-13
  • 28 Withers R, Gore C, Gass G, Hahn A. Determination of maximal oxygen consumption (V˙O2max) or maximal aerobic power. Gore CJ Physiological Tests for Elite Athletes. Champaign, IL; Human Kinetics 2000: 122

Dr. Simon A. Jobson

University of Winchester
Department of Sports Studies

Sparkford Road

S022 4NR Winchester

United Kingdom

Fax: + 44 19 62 82 71 02

Email: Simon.Jobson@winchester.ac.uk