RSS-Feed abonnieren
DOI: 10.1055/s-2008-1027627
© Georg Thieme Verlag KG Stuttgart · New York
Pseudotumor cerebri: Quantitative Normalwerte anatomischer Kennstrukturen im kraniellen MRT
Pseudotumor Cerebri: Quantitative In-Vivo Measurements of Markers of Intracranial HypertensionPublikationsverlauf
eingereicht: 8.5.2008
angenommen: 6.6.2008
Publikationsdatum:
08. September 2008 (online)

Zusammenfassung
Ziel: Eine intrakranielle Druckerhöhung kann zu Veränderungen an anatomischen Strukturen führen, deren Kenntnis Voraussetzung einer erfolgreichen MR-Diagnostik beim Pseudotumor cerebri ist. Ziel der Untersuchung war, quantitative Normalwerte kritischer Strukturen zu bestimmen und deren Abhängigkeit von Geschlecht, Alter und Body-Mass-Index (BMI) zu ermitteln. Material und Methoden: 123 Personen ohne Hinweis auf eine intrakranielle Hypertension (63 Frauen, 60 Männer, 18 – 86 Jahre, MW 49,5 ± 17,8 Jahre, durchschnittlicher BMI 25,3 ± 4,2) wurden prospektiv eingeschlossen. Anhand einer kraniellen 3T-MRT (koronare STIR-Sequenz) wurde der Durchmesser des N. opticus, der Optikusscheide und des perineuralen Liquorsaums an 4 intraorbitalen Positionen vermessen, Höhe und Breite der Hypophyse und des Cavum Meckeli bestimmt und die Fläche errechnet. Ergebnisse: Die Weite der Optikusscheide nahm von ventral nach dorsal signifikant von im Mittel 5,3 ± 0,6 mm auf 4,1 ± 0,4 mm ab, sodass die Messposition bei Vergleichsmessungen zu berücksichtigen ist. Ähnliches gilt für den perineuralen Liquorsaum (MW 1,4 ± 0,3 mm vs. 1,0 ± 0,2 mm) und in geringem Maße für den Sehnerven selbst (MW 2,4 ± 0,4 mm vs. 2 ± 0,3 mm, p jeweils < 0,001). Die Weite der Optikusscheide korrellierte geringfügig mit dem Alter (r = 0,199), dies war aber statistisch nicht signifikant. Die koronar gemessene Fläche des Cavum Meckeli war unabhängig von Geschlecht, Alter und BMI und betrug im Mittel 39 ± 9,3 mm2. Die Höhe der Hypophyse unterschied sich bei Frauen (MW 4,4 ± 0,9 mm) und Männern (MW 4,2 ± 0,8 mm) im Mittel nur gering, allerdings nahm die Höhe bei Frauen im Gegensatz zu Männern im Alter signifikant ab (r = –0,38, p = 0,01). Schlussfolgerung: Die hier präsentierten Normalwerte sind Ausgangspunkt für die Bestimmung pathologischer Veränderungen bei Patienten mit V. a. Pseudotumor cerebri.
Abstract
Purpose: Intracranial hypertension can change the morphology of anatomical structures that are critical in the evaluation of pseudotumor syndromes. The purpose of our study was to establish the normal range of such markers of intracranial hypertension and to consider a dependency on sex, age and body-mass index (BMI). Materials and Methods: 123 persons without signs or symptoms of intracranial hypertension (63 females, 60 males, 18 – 86 years old, mean 49.5 SD 17.8 years, mean BMI 25.3 SD 42) were prospectively enrolled and MRI was performed at 3T. A STIR sequence in the coronal plane was used to measure the width of the optic nerve, the perioptic fluid rim and the total optic nerve sheath diameter in 4 different locations behind the eyeball. The height and width of the pituitary and Meckel’s cave were also measured and the area was calculated. Results: The mean width of the optic nerve sheath narrows significantly from anterior (mean 5.3 SD 0.6 mm) to posterior (mean 4.1 SD 0.4 mm), as does the perioptic fluid rim (mean 1.4 SD 0.3 mm vs. mean 1.0 SD 0.2 mm) and – to a lesser extent – the optic nerve itself (mean 2.4 SD 0.4 mm vs. mean 2 SD 0.3 mm, p = 0.000 for all). There was no statistically relevant correlation of the width of the optic nerve sheath with age. The coronal area of Meckel’s cave was independent of sex, age or BMI (mean 39 SD 9.3 mm2). The height of the pituitary differed little in women (mean 4.4 SD 0.9 mm) and men (mean 4.2 SD 0.8 mm), but we found a significant negative correlation with age in women only (r = –0.38, p = 0.01). Conclusion: The presented typical values and their deviations serve as a basis for the evaluation of pathologies in patients suspected of having pseudotumor syndrome.
Key words
pseudotumor cerebri - pituitary - MR imaging - orbit - intracranial hypertension
Literatur
- 1
Ball A K, Clarke C E.
Idiopathic intracranial hypertension.
Lancet Neurol.
2006;
5
433-442
MissingFormLabel
- 2
Binder D K, Horton J C, Lawton M T. et al .
Idiopathic intracranial hypertension.
Neurosurgery.
2004;
54
538-551; discussion 551 – 532
MissingFormLabel
- 3
Skau M, Brennum J, Gjerris F. et al .
What is new about idiopathic intracranial hypertension? An updated review of mechanism
and treatment.
Cephalalgia.
2006;
26
384-399
MissingFormLabel
- 4
Dandy W E.
Intracranial Pressure without Brain Tumor: Diagnosis and Treatment.
Ann Surg.
1937;
106
492-513
MissingFormLabel
- 5
Friedman D I, Jacobson D M.
Diagnostic criteria for idiopathic intracranial hypertension.
Neurology.
2002;
59
1492-1495
MissingFormLabel
- 6
Biousse V, Ameri A, Bousser M G.
Isolated intracranial hypertension as the only sign of cerebral venous thrombosis.
Neurology.
1999;
53
1537-1542
MissingFormLabel
- 7
Fera F, Bono F, Messina D. et al .
Comparison of different MR venography techniques for detecting transverse sinus stenosis
in idiopathic intracranial hypertension.
J Neurol.
2005;
252
1021-1025
MissingFormLabel
- 8
Lin A, Foroozan R, Danesh-Meyer H V. et al .
Occurrence of cerebral venous sinus thrombosis in patients with presumed idiopathic
intracranial hypertension.
Ophthalmology.
2006;
113
2281-2284
MissingFormLabel
- 9
Silbergleit R, Junck L, Gebarski S S. et al .
Idiopathic intracranial hypertension (pseudotumor cerebri): MR imaging.
Radiology.
1989;
170
207-209
MissingFormLabel
- 10
Brodsky M C, Vaphiades M.
Magnetic resonance imaging in pseudotumor cerebri.
Ophthalmology.
1998;
105
1686-1693
MissingFormLabel
- 11
Gass A, Barker G J, Riordan-Eva P. et al .
MRI of the optic nerve in benign intracranial hypertension.
Neuroradiology.
1996;
38
769-773
MissingFormLabel
- 12
Lirng J F, Fuh J L, Wu Z A. et al .
Diameter of the superior ophthalmic vein in relation to intracranial pressure.
AJNR Am J Neuroradiol.
2003;
24
700-703
MissingFormLabel
- 13
Agid R, Farb R I, Willinsky R A. et al .
Idiopathic intracranial hypertension: the validity of cross-sectional neuroimaging
signs.
Neuroradiology.
2006;
48
521-527
MissingFormLabel
- 14
Mokri B.
The Monro-Kellie hypothesis: applications in CSF volume depletion.
Neurology.
2001;
56
1746-1748
MissingFormLabel
- 15
Hansen H C, Helmke K.
Validation of the optic nerve sheath response to changing cerebrospinal fluid pressure:
ultrasound findings during intrathecal infusion tests.
J Neurosurg.
1997;
87
34-40
MissingFormLabel
- 16
Hansen H C, Helmke K.
The subarachnoid space surrounding the optic nerves. An ultrasound study of the optic
nerve sheath.
Surg Radiol Anat.
1996;
18
323-328
MissingFormLabel
- 17
Helmke K, Hansen H C.
Fundamentals of transorbital sonographic evaluation of optic nerve sheath expansion
under intracranial hypertension II. Patient study.
Pediatr Radiol.
1996;
26
706-710
MissingFormLabel
- 18
Gibby W A, Cohen M S, Goldberg H I. et al .
Pseudotumor cerebri: CT findings and correlation with vision loss.
Am J Roentgenol.
1993;
160
143-146
MissingFormLabel
- 19
Ozgen A, Aydingoz U.
Normative measurements of orbital structures using MRI.
J Comput Assist Tomogr.
2000;
24
493-496
MissingFormLabel
- 20
Brodsky M C, Glasier C M.
Magnetic resonance visualization of the swollen optic disc in papilledema.
J Neuroophthalmol.
1995;
15
122-124
MissingFormLabel
- 21
Weigel M, Lagreze W A, Lazzaro A. et al .
Fast and quantitative high-resolution magnetic resonance imaging of the optic nerve
at 3.0 tesla.
Invest Radiol.
2006;
41
83-86
MissingFormLabel
- 22
Cox T D, Elster A D.
Normal pituitary gland: changes in shape, size, and signal intensity during the 1st
year of life at MR imaging.
Radiology.
1991;
179
721-724
MissingFormLabel
- 23
Elster A D, Chen M Y, Williams 3 rd D W. et al .
Pituitary gland: MR imaging of physiologic hypertrophy in adolescence.
Radiology.
1990;
174
681-685
MissingFormLabel
- 24
Elster A D, Sanders T G, Vines F S. et al .
Size and shape of the pituitary gland during pregnancy and post partum: measurement
with MR imaging.
Radiology.
1991;
181
531-535
MissingFormLabel
- 25
Suzuki M, Takashima T, Kadoya M. et al .
Height of normal pituitary gland on MR imaging: age and sex differentiation.
J Comput Assist Tomogr.
1990;
14
36-39
MissingFormLabel
- 26
Hayakawa K, Konishi Y, Matsuda T. et al .
Development and aging of brain midline structures: assessment with MR imaging.
Radiology.
1989;
172
171-177
MissingFormLabel
- 27
Denk C C, Onderoglu S, Ilgi S. et al .
Height of normal pituitary gland on MRI: differences between age groups and sexes.
Okajimas Folia Anat Jpn.
1999;
76
81-87
MissingFormLabel
- 28
Böttcher J, Hahn H K, Reichenbach J R. et al .
MR-Volumetrie der Hypophyse: In-vitro- and In-vivo-Resultate einer neuen semiautomatischen
interaktiven Segmentationstechnik.
Fortschr Röntgenstr.
2005;
177
S 328
MissingFormLabel
- 29
Farb R I, Vanek I, Scott J N. et al .
Idiopathic intracranial hypertension: the prevalence and morphology of sinovenous
stenosis.
Neurology.
2003;
60
1418-1424
MissingFormLabel
- 30
Rohr A, Dorner L, Stingele R. et al .
Reversibility of venous sinus obstruction in idiopathic intracranial hypertension.
AJNR Am J Neuroradiol.
2007;
28
656-659
MissingFormLabel
- 31
Bono F, Giliberto C, Mastrandrea C. et al .
Transverse sinus stenoses persist after normalization of the CSF pressure in IIH.
Neurology.
2005;
65
1090-1093
MissingFormLabel
- 32
Williams L S, Schmalfuss I M, Sistrom C L. et al .
MR imaging of the trigeminal ganglion, nerve, and the perineural vascular plexus:
normal appearance and variants with correlation to cadaver specimens.
AJNR Am J Neuroradiol.
2003;
24
1317-1323
MissingFormLabel
Dr. Axel Rohr
Neuroradiologie, UK-SH Campus Kiel
Schittenhelmstr. 10
24105 Kiel
Telefon: ++ 49/4 31/5 97 48 06
Fax: ++ 49/4 31/5 97 49 13
eMail: Axel.Rohr@gmx.de