Synthesis 2008(5): 754-762  
DOI: 10.1055/s-2008-1032155
PAPER
© Georg Thieme Verlag Stuttgart · New York

Selective Monofunctionalization of Tri-urea-mono-acetamides of ­Calix[4]arenes on the Narrow Rim

Yuliya Rudzevich*a, Valentyn Rudzevicha,1, Michael Bolteb,2, Volker Böhmer*a
a Abteilung Lehramt Chemie, Fachbereich Chemie, Pharmazie und Geowissenschaften, Johannes Gutenberg-Universität Mainz, Duesbergweg­ 10-14, 55099 Mainz, Germany
Fax: +49(6131)3925419; e-Mail: rudzevic@mail.uni-mainz.de; e-Mail: vboehmer@mail.uni-mainz.de;
b Fachbereich Chemie und Pharmazeutische Wissenschaften, Institut für Anorganische Chemie, Johann Wolfgang Goethe-Universität, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
Fax: +49(69)79829239; e-Mail: bolte@chemie.uni-frankfurt.de;
Further Information

Publication History

Received 4 October 2007
Publication Date:
08 February 2008 (online)

Abstract

The synthesis of calix[4]arenes substituted at their wide rim by three 3-aryl-urea and one acetamide group and at their narrow rim by three alkyl ether groups and one ether group ending in a carboxy function is described. The reaction sequence ensures that these functional groups are attached to the same phenolic unit. Two key intermediates have been additionally characterized by X-ray crystal structure analysis.

1

Permanent address: Institute of Organic Chemistry, NAS of Ukraine, Murmanska str. 5, Kyiv-94, 02094 Ukraine.

2

For X-ray crystal structure analysis.

6

For self-sorting see: Braekers, D.; Peters, C.; Bogdan, A.; Rudzevich, Y.; Böhmer, V.; Desreux, J. F. J. Org. Chem. 2008, 73, 701.

11

Also both positions might be functionalized, while the introduction of four functional groups (requiring no selectivity) most probably leads to sterical crowding, which would prevent the formation of dendrimers.

13

To use calix[4]arenes as universal building blocks, it would be ideal to functionalize all four positions at the wide rim (the p-positions of the phenolic units) and at the narrow rim (the four phenolic OH functions) selectively and independently.

17

X-ray crystallographic data for 4: C53H71NO8·C2H3N M = 891.16 g·mol-1, colorless block, size 0.52 × 0.41 × 0.26 mm3, monoclinic, space group P21/n, a = 18.4285 (13), b = 24.673 (2), c = 23.6687 (17) Å, β = 101.889 (6), V = 10531.0(14) Å3, T = -100 °C, Z = 8, ρcalcd = 1.124 g·cm-3, µ (Mo-Kα) = 0.074 mm-1, F(000) = 3856, 66424 reflections in h(-21/22), k(-29/29), l(-28/26), measured in the range 2.56° £ Θ £ 25.39°, completeness Θmax = 98.3%, 19049 independent reflections, R int = 0.0889, 8537 reflections with F o > 4σ(F o), 1229 parameters, 0 restraints, R1obs = 0.0676, wR2obs = 0.1603, R1all = 0.1406, wR2all = 0.1890, GOOF = 0.850, largest difference peak and hole: 0.928/-0.363 e·Å-3.

18

X-ray crystallographic data for 6: C51H69NO5·2 C2H6OS, M = 932.33 g·mol-1, colorless rod, size 0.27 × 0.14 × 0.13 mm3, triclinic, space group P-1, a = 12.3270 (8), b = 21.5880 (11), c = 22.6254 (12) Å, α = 65.959 (4), β = 83.687 (5), γ = 80.551 (5)°, V = 5417.9 (5) Å3, T = -100 °C, Z = 4, ρcalcd = 1.143 g·cm-3, µ (Mo-Kα) = 0.147 mm-1, F(000) = 2024, 52650 reflections in h(-14/12), k(-25/25), l(-26/26), measured in the range 3.35° £ Θ £ 25.03°, completeness Θmax = 99.4%, 19028 independent reflections, R int = 0.0624, 12643 reflections with F o > 4σ(F o), 1263 parameters, 60 restraints, R1obs = 0.0895, wR2obs = 0.2316, R1all = 0.1274, wR2all = 0.2585, GOOF = 1.047, largest difference peak and hole: 1.318/-1.408 e·Å-3.

22

SHELXL-97 (Release 97-2), Sheldrick, G. M., University of Göttingen: Germany, 1997.

23

CCDC 662358 (4) and CCDC 662359 (6) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 (1223)336033; email: deposit@ccdc.cam.ac.uk).