Zahnmedizin up2date 2009; 3(1): 55-78
DOI: 10.1055/s-2008-1039262
Zahnerhaltung, Prävention und Restauration

© Georg Thieme Verlag KG Stuttgart · New York

Faserverstärkte Kompositbrücken

Diana Wolff, Cornelia Schach, Theresa Kraus
Further Information

Publication History

Publication Date:
16 February 2009 (online)

Einleitung

Moderne Fasermaterialien bieten bisher nicht gekannte Möglichkeiten der minimalinvasiven Vorgehensweise. Vor allem die Versorgung von kleinen begrenzten Lücken (ein oder zwei fehlende Zähne) bei weitgehend gesunden Nachbarzähnen ist mithilfe von minimalinvasiven oder nicht invasiven faserverstärkten Kompositbrücken möglich. Geht ein Zahn verloren (Abb. [1]), kann heute durch faserverstärkte Kompositbrücken unter Beachtung der Indikationen dem Wunsch des Patienten nach einem unkomplizierten, sofortigen Zahnersatz durchaus entsprochen werden.

Abb. 1 a bis ea 65-jährige Patientin mit Zahnverlust 41 und gesunden Nachbarzähnen 31, 42. b Zum Ersatz von Zahn 41 trägt sie eine Modellgussprothese. c Modellgussprothese zum Ersatz von Zahn 41. d Der Patientin wurde eine festsitzende Versorgung in Form einer glasfaserverstärkten Kompositbrücke eingegliedert. Zur Lückenverkleinerung wurden die Zähne 42 und 31 im Sinne einer Formkorrektur mittels direkt eingebrachtem Komposit verbreitert. e Ansicht der glasfaserverstärkten Kompositbrücke von palatinal.

Faserverstärkte Komposite für die Anwendung in der Zahntechnik wurden schon in den frühen 1960ern entwickelt, um Prothesenbasen zu verstärken [[1]]. Durch intensive Weiterentwicklung wurden materialspezifische Probleme, wie der Verbund zwischen Fasern und Kompositmatrix, gelöst. Die hohe Stabilität faserverstärkter Verbundwerkstoffe wird deutlich, wenn man deren technische Anwendung im Flugzeug- und Schiffsbau betrachtet [[2]].

Anwendungsbereiche faserverstärkter Komposite

  • Verstärkung von Prothesenbasen herausnehmbarer Prothesen [[3]–[8]]

  • Verstärkung von Kompositbrücken

  • faserverstärkte Wurzelstifte

  • parodontale Verblockungen

  • kieferorthopädische Retainer

  • Reparatur von Keramikveneers

Literatur

  • 1 Smith D C. Recent developments and prospects in dental polymers.  J Prosthet Dent. 1962;  12 1066-1078
  • 2 Freilich M A. Rationale for the clinical use of fiberreinforced composites. Freilich MA Meiers JC, Duncan JP, goldberg AJ Fiber-Reinforced Composites in Clinical Dentistry. Chicago; Quintessence Publishing 2001
  • 3 Vallittu P K. Glass fiber reinforcement in repaired acrylic resin removable dentures: preliminary results of a clinical study.  Quintessence Int. 1997;  28 39-44
  • 4 Cheng Y Y, Chow T W. Fabrication of complete denture bases reinforced with polyethylene woven fabric.  J Prosthodont. 1999;  8 268-272
  • 5 Ladizesky N H. The integration of dental resins with highly drawn polyethylene fibres.  Clin Mater. 1990;  6 181-192
  • 6 Ladizesky N H, Chow T W, Ward I M. The effect of highly drawn polyethylene fibres on the mechanical properties of denture base resins.  Clin Mater. 1990;  6 209-225
  • 7 Ladizesky N H, Ho C F, Chow T W. Reinforcement of complete denture bases with continuous high performance polyethylene fibers.  J Prosthet Dent. 1992;  68 934-939
  • 8 Ladizesky N H, Chow T W, Cheng Y Y. Denture base reinforcement using woven polyethylene fiber.  Int J Prosthodont. 1994;  7 307-314
  • 9 Goldberg A J. et al . Screening of matrices and fibers for reinforced thermoplastics intended for dental applications.  J Biomed Mater Res. 1994;  28 167-173
  • 10 Tanner J. et al . Adsorption of parotid saliva proteins and adhesion of Streptococcus mutans ATCC 21752 to dental fiber-reinforced composites.  J Biomed Mater Res B Appl Biomater. 2003;  66 391-398
  • 11 Tanner J, Vallittu P K, Soderling E. Adherence of Streptococcus mutans to an E‐glass fiber-reinforced composite and conventional restorative materials used in prosthetic dentistry.  J Biomed Mater Res. 2000;  49 250-256
  • 12 Tanner J, Vallittu P K, Soderling E. Effect of water storage of E‐glass fiber-reinforced composite on adhesion of Streptococcus mutans.  Biomaterials. 2001;  22 1613-1618
  • 13 Vallittu P K. Comparison of two different silane compounds used for improving adhesion between fibres and acrylic denture base material.  J Oral Rehabil. 1993;  20 533-539
  • 14 Vallittu P K. Ultra-high-modulus polyethylene ribbon as reinforcement for denture polymethyl methacrylate: a short communication.  Dent Mater. 1997;  13 381-382
  • 15 Vallittu P K. The effect of glass fiber reinforcement on the fracture resistance of a provisional fixed partial denture.  J Prosthet Dent. 1998;  79 125-130
  • 16 Chung K, Lin T, Wang F. Flexural strength of a provisional resin material with fibre addition.  J Oral Rehabil. 1998;  25 214-217
  • 17 Lassila L V, Vallittu P K. The effect of fiber position and polymerization condition on the flexural properties of fiber-reinforced composite.  J Contemp Dent Pract. 2004;  5 14-26
  • 18 Lassila L V. et al . Flexural properties of fiber reinforced root canal posts.  Dent Mater. 2004;  20 29-36
  • 19 Lassila L V, Nohrstrom T, Vallittu P K. The influence of short-term water storage on the flexural properties of unidirectional glass fiber-reinforced composites.  Biomaterials. 2002;  23 2221-2229
  • 20 Kallio T T, Lastumaki T K, Vallittu P K. Bonding of restorative and veneering composite resin to some polymeric composites.  Dent Mater. 2001;  17 80-86
  • 21 Lastumaki T M, Lassila L V, Vallittu P K. The semi-interpenetrating polymer network matrix of fiber-reinforced composite and its effect on the surface adhesive properties.  J Mater Sci Mater Med. 2003;  14 803-809
  • 22 Dyer S R. et al . Effect of cross-sectional design on the modulus of elasticity and toughness of fiber-reinforced composite materials.  J Prosthet Dent. 2005;  94 219-226
  • 23 Vallittu P K. Effect of 180-week water storage on the flexural properties of E‐glass and silica fiber acrylic resin composite.  Int J Prosthodont. 2000;  13 334-339
  • 24 Nohrstrom T J, Vallittu P K, Yli-Urpo A. The effect of placement and quantity of glass fibers on the fracture resistance of interim fixed partial dentures.  Int J Prosthodont. 2000;  13 72-78
  • 25 Magne P. et al . Stress distribution of inlay-anchored adhesive fixed partial dentures: a finite element analysis of the influence of restorative materials and abutment preparation design.  J Prosthet Dent. 2002;  87 516-527
  • 26 Freilich M A. et al . Clinical evaluation of fiber-reinforced fixed bridges.  J Am Dent Assoc. 2002;  133 1524-1534 1540-1541
  • 27 Xie Q, Lassila L V, Vallittu P K. Comparison of load-bearing capacity of direct resin-bonded fiber-reinforced composite FPDs with four framework designs.  J Dent. 2007;  35 578-582
  • 28 Kern M. Clinical long-term survival of two-retainer and single-retainer all-ceramic resin-bonded fixed partial dentures.  Quintessence Int. 2005;  36 141-147
  • 29 Ozcan M, Kumbuloglu O, User A. Fracture strength of fiber-reinforced surface-retained anterior cantilever restorations.  Int J Prosthodont. 2008;  21 228-232
  • 30 Anding C. Ästhetischer Lückenschluss bei einer jugendlichen Patientin mit Nichtanlage und Zahnhypoplasie.  ZWR. 2006;  115 141-144
  • 31 Roeters J. Anfertigung einer direkten Kompositbrücke sofort nach Extraktion. Ein Fallbericht.  Die Quintessenz. 2006;  57 1063-1068
  • 32 Auplish G, Darbar U R. Immediate anterior tooth replacement using fibre-reinforced composite.  Dent Update. 2000;  27 267-270
  • 33 Arteaga S, Meiers J C. Technique for placement of a posterior prefabricated fiber-reinforced composite bridge.  Gen Dent. 2006;  54 393-396
  • 34 Akin H, Turgut M, Coskun M E. Restoration of an anterior edentulous space with a unique glass fiber-reinforced composite removable partial denture: a case report.  J Esthet Restor Dent. 2007;  19 193-197 198
  • 35 Eminkahyagil N, Erkut S. An innovative approach to chairside provisional replacement of an extracted anterior tooth: use of fiber-reinforced ribbon-composites and a natural tooth.  J Prosthodont. 2006;  15 316-320
  • 36 Smidt A. Esthetic provisional replacement of a single anterior tooth during the implant healing phase: a clinical report.  J Prosthet Dent. 2002;  87 598-602
  • 37 Chan D C, Giannini M, De Goes M F. Provisional anterior tooth replacement using nonimpregnated fiber and fiber-reinforced composite resin materials: a clinical report.  J Prosthet Dent. 2006;  95 344-348
  • 38 Vallittu P K. Prosthodontic treatment with a glass fiber-reinforced resin-bonded fixed partial denture: A clinical report.  J Prosthet Dent. 1999;  82 132-135
  • 39 Narva K K, Lassila L V, Vallittu P K. The static strength and modulus of fiber reinforced denture base polymer.  Dent Mater. 2005;  21 421-428
  • 40 Khan A S. et al . Comparison of the visco-elastic behavior of a pre-impregnated reinforced glass fiber composite with resin-based composite.  Dent Mater. 2008;  24 1534-1538
  • 41 Ballo A. et al . In vitro mechanical testing of glass fiber-reinforced composite used as dental implants.  J Contemp Dent Pract. 2008;  9 41-48
  • 42 Garoushi S. et al . Static and fatigue compression test for particulate filler composite resin with fiber-reinforced composite substructure.  Dent Mater. 2007;  23 17-23
  • 43 Garoushi S. Load bearing capacity of fibre-reinforced and particulate filler composite resin combination.  J Dent. 2006;  34 179-184
  • 44 Garoushi S K, Vallittu P K, Lassila L V. Use of short fiber-reinforced composite with semi-interpenetrating polymer network matrix in fixed partial dentures.  J Dent. 2007;  35 403-408
  • 45 Garoushi S K. et al . Fracture resistance of fragmented incisal edges restored with fiber-reinforced composite.  J Adhes Dent. 2006;  8 91-95
  • 46 Garoushi S K. et al . Fiber-reinforced composite substructure: load-bearing capacity of an onlay restoration and flexural properties of the material.  J Contemp Dent Pract. 2006;  7 1-8
  • 47 Garoushi S K, Lassila L V, Vallittu P K. Short fiber reinforced composite: the effect of fiber length and volume fraction.  J Contemp Dent Pract. 2006;  7 10-17
  • 48 Goehring T N, Peters O A, Lutz F. Marginal adaptation of inlay-retained adhesive fixed partial dentures after mechanical and thermal stress: an in vitro study.  J Prosthet Dent. 2001;  86 81-92
  • 49 Kolbeck C. et al . In vitro examination of the fracture strength of 3 different fiber-reinforced composite and 1 all-ceramic posterior inlay fixed partial denture systems.  J Prosthodont. 2002;  11 248-253
  • 50 Kolbeck C. et al . In vitro study of fracture strength and marginal adaptation of polyethylene-fibre-reinforced-composite versus glass-fibre-reinforced-composite fixed partial dentures.  J Oral Rehabil. 2002;  29 668-674
  • 51 Rosentritt M. et al . In vitro repair of three-unit fiber-reinforced composite FPDs.  Int J Prosthodont. 2001;  14 344-349
  • 52 Vallittu P K, Sevelius C. Resin-bonded, glass fiber-reinforced composite fixed partial dentures: a clinical study.  J Prosthet Dent. 2000;  84 413-418
  • 53 Vallittu P K. Survival rates of resin-bonded, glass fiber–reinforced composite fixed partial dentures with a mean follow-up of 42 months: A pilot study.  J Prosthetic Dent. 2004;  91 241-246
  • 54 Goodacre C J. et al . Clinical complications in fixed prosthodontics.  J Prosthet Dent. 2003;  90 31-41

Dr. med. dent. Diana Wolf

Poliklinik für Zahnerhaltungskunde
Klinik für Mund-, Zahn- und Kieferkrankheiten des Universitätsklinikums Heidelberg
Universitätsklinikum Heidelberg

Im Neuenheimer Feld 400

69120 Heidelberg

Phone: 0 62 21/5 63 60 25

Fax: 0 62 21/56 50 74

Email: Diana.Wolff@med.uni-heidelberg.de