Subscribe to RSS
DOI: 10.1055/s-2008-1042940
Tetrafluoroboric Acid Adsorbed on Silica Gel as a Reusable Heterogeneous Dual-Purpose Catalyst for Conversion of Aldehydes/Ketones into Acetals/Ketals and Back Again
Publication History
Publication Date:
18 March 2008 (online)
Abstract
Aldehydes and ketones can be protected as acetals and ketals by treatment with trimethyl orthoformate (TMOF) or triethyl orthoformate (TEOF) under the catalytic influence of tetrafluoroboric acid adsorbed on silica gel (HBF4-SiO2). In the case of aldehydes or ketones with highly electrophilic carbonyl group, the reactions are carried out under solvent-free conditions. Aryl alkyl ketones, aryl styryl ketones, aldehydes with weakly electrophilic carbonyl groups, and aldehydes with substituents that can coordinate with the catalyst require the presence of the corresponding alcohol as solvent. For substrates that can be converted into acetals under neat conditions, the acetal formation takes place at a faster rate when the alcohol is used as the solvent. The catalyst can be recovered and reused/recycled four times (after reactivation after each use) without any significant decrease in its catalytic efficiency. The parent aldehydes/ketones are regenerated from the corresponding acetals/ketals in high yields by the treatment with water-alcohol in the presence of HBF4-SiO2 at room temperature for short times. Excellent selectivity was observed during inter- and intramolecular competition studies involving carbonyl substrates with varying electronic and steric environments. Selective acetal formation of benzaldehyde takes place in the presence of 4-(dimethylamino)benzaldehyde, thiophene-2-carboxaldehyde, 1-naphthaldehyde, 9-anthraldehyde, or acetophenone, but 3-nitrobenzaldehyde undergoes selective acetal formation in preference to benzaldehyde. In the case of 4-acetylbenzaldehyde, exclusive acetal formation of the aldehyde carbonyl group occurs.
Key words
acetals - aldehydes - ketones - protection/deprotection - heterogeneous catalyst
- 1
Carey JS.Laffan D.Thomson C.Williams MT. Org. Biomol. Chem. 2006, 4: 2337 -
2a
Li L.-S.Das S.Sinha SC. Org. Lett. 2004, 6: 127 -
2b
Yoshioka S.Oshita M.Tobisu M.Chatani N. Org. Lett. 2005, 7: 3697 -
2c
Lemiegre L.Stevens RL.Combret JC.Maddaluno J. Org. Biomol. Chem. 2005, 3: 1308 -
3a
Meskens FAJ. Synthesis 1981, 501 -
3b
Greene TW.Wuts PGM. Protecting Groups in Organic Synthesis 3rd ed.: Wiley; New York: 1999. -
3c
Sartori G.Ballini R.Bigi R.Bosica G.Maggi R.Righi P. Chem. Rev. 2004, 104: 199 ; and references cited therein - For recent examples, see:
-
4a
Nair V.Rajan R.Balagopal LL.Nair G.Ros S.Mohanan K. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2005, 44: 141 -
4b
Thomas B.Prathapan S.Sugunan S. Micropor. Mesopor. Mat. 2005, 80: 65 -
4c
Wiles C.Watts P.Haswell SJ. Tetrahedron 2005, 61: 5209 - For Al(HSO4)3, see:
-
4d
Mirjalili BF.Zolfigol MA.Bamoniri A.Hazar A. J. Braz. Chem. Soc. 2005, 16: 877 -
4e
Kumar R.Chakraborti AK. Tetrahedron Lett. 2005, 46: 8319 -
4f
Kumar R.Kumar D.Chakraborti AK. Synthesis 2007, 299 ; and references cited therein - 5
Tundo P.Anastas P.Black DS.Breen J.Collins T.Memoli S.Miyamoto J.Polyakoff M.Tumas W. Pure Appl. Chem. 2000, 72: 1207 - 6
Clark JH. Pure Appl. Chem. 2001, 73: 103 - 7
Sheldon RA. Pure Appl. Chem. 2000, 72: 1233 - 8
Corma A.García H. Chem. Rev. 2003, 103: 4307 -
9a
Chakraborti AK.Gulhane R. Chem. Commun. 2003, 1896 -
9b
Chakraborti AK.Gulhane R. Tetrahedron Lett. 2003, 44: 3521 -
9c
Chakraborti AK.Chankeshwara SV. Org. Biomol. Chem. 2006, 4: 2769 -
9d
Rudrawar S.Besra RC.Chakraborti AK. Synthesis 2006, 2767 -
9e
Khatik GL.Sharma G.Kumar R.Chakraborti AK. Tetrahedron 2007, 63: 1200 - 11
Gopinath R.Haque SJ.Patel BK. J. Org. Chem. 2002, 67: 5842 -
13a
Soderquist JA.Kock I.Estrella ME. Org. Process Res. Dev. 2006, 10: 1076 -
13b
Balakumar V.Aravind A.Baskaran S. Synlett 2004, 647 -
14a
Ates A.Gautier A.Leroy B.Plancher JM.Quesnel Y.Vanherck JC.Marko IE. Tetrahedron 2003, 59: 8989 -
14b
Bose DS.Jayalakshmi B.Narsaiah AV. Synthesis 2000, 67 -
15a
Sun J.Dong Y.Cao L.Wang X.Wang S.Hu Y. J. Org. Chem. 2004, 69: 8932 -
15b
Mirajalili BF.Zolfigol MA.Bamoniri A.Hazar A. Bull. Korean Chem. Soc. 2004, 25: 1075 -
15c
Dalpozzo R.De Nino A.Maiuolo L.Nardi M.Procopio A.Tagarelli A. Synthesis 2004, 496 -
15d
Sato K.Kishimoto T.Morimoto M.Saimoto H.Shigemasa Y. Tetrahedron Lett. 2003, 44: 8623 -
15e
Krishnaveni NS.Surendra K.Reddy MA.Nageswar YVD.Rama Rao K. J. Org. Chem. 2003, 68: 2018 -
15f
Dalpozzo R.De Nino A.Maiuolo L.Procopio A.Tagarelli A.Sindona G.Bartoli G. J. Org. Chem. 2002, 67: 9093 - 16
Lee SH.Lee JH.Yoon CM. Tetrahedron Lett. 2002, 43: 2699 - 17
Heywood D.Phillips B. J. Org. Chem. 1960, 25: 1699 - 18
Tateiwa J.Horiuchi H.Uemura S. J. Org. Chem. 1995, 60: 4039 - 19
Pouchart CJ.Jacqlynn B. The Aldrich Library of 13 C and 1 H FT NMR Spectra 1st ed., Vol. II: Aldrich Chemical Co. Inc.; Milwaukee: 1993.
References
HBF4-SiO2 is not commercially available, and was invented by Chakraborti and Gulhane (see also ref. 9b).
12The aldehyde proton of benzaldehyde, 3-nitrobenzaldehyde, 4-(dimethylamino)benzaldehyde, thiophene-2-carboxalde-hyde, 1-naphthaldehyde, and anthracene-9-carbaldehyde appeared at δ = 9.99, 10.15, 9.72, 9.93, 10.31, and 11.55, respectively. The corresponding proton of the dimethyl acetals of these aldehydes appeared at δ = 5.38, 5.48, 5.31, 5.63, 5.89, and 6.53, respectively. The aldehyde proton of 4-acetylbenzaldehyde appeared at δ = 10.11, which was shifted to δ = 5.44 in 1-[4-(dimethoxymethyl)phenyl]ethan-1-one.18