Subscribe to RSS
DOI: 10.1055/s-2008-1067097
Selectivity Control in 1,2- and 1,4-Additions of Aluminum Organyls to Carbonyl Compounds
Publication History
Publication Date:
16 May 2008 (online)

Abstract
Aluminum organyls are valuable reagents for carbon-carbon bond formation as they can either be purchased at low prices or conveniently be prepared, for example, by hydro- or carboalumination of alkenes and alkynes. Although their application in reactions with α,β-unsaturated carbonyl compounds is rather limited, it creates a diverse picture concerning the selectivity of product formation which depends on several factors such as the type of organic residue, the conformation of the enone, the presence of additional functional groups and the donor ability of the solvent. This review describes issues of selectivity of such uncatalyzed transformations as well as conjugate additions catalyzed by achiral copper and nickel catalysts in which alanes can act similarly or even superiorly to the more common lithium or magnesium organyls. Moreover, the rapidly growing field of transition-metal-catalyzed asymmetric 1,2- and 1,4-additions is reviewed, in which aluminum reagents can not only lead to enantioselective alkyl additions, thus substituting zinc organyls, but also afford introduction of aryl, alkenyl and alkynyl groups.
1 Introduction
2 Uncatalyzed Additions to α,β-Unsaturated Carbonyl Compounds
2.1 Regioselectivity with Plain Enones
2.2 Selective Conjugate Additions to Cyclic Enones
2.3 Conjugate Additions to Carboxylic Compounds
3 Racemic Copper- and Nickel-Catalyzed 1,4-Additions
4 Asymmetric Addition to Carbonyl Compounds
4.1 Enantioselective Conjugate Additions to Enones
4.2 Enantioselective 1,2-Additions
5 Conclusion
Key words
aluminum - asymmetric catalysis - nucleophilic additions - organometallic reagents - regioselectivity
- 1
Lipshutz BH.Sengupta S. Org. React. 1992, 41: 135 - For enantioselective 1,2-additions, see:
-
2a
Soai K.Niwa S. Chem. Rev. 1992, 92: 833 -
2b
Pu L.Yu H.-B. Chem. Rev. 2001, 101: 757 -
2c
Ramon DJ.Yus M. Angew. Chem. Int. Ed. 2004, 43: 284 ; Angew. Chem. 2004, 116, 286 - For enantioselective 1,4-additions, see:
-
3a
Sibi MP.Manyem S. Tetrahedron 2000, 56: 8033 -
3b
Krause N.Hoffmann-Röder A. Synthesis 2001, 171 -
3c
Alexakis A.Benhaim C. Eur. J. Org. Chem. 2002, 3221 -
3d
Christoffers J.Koripelly G.Rosiak A.Rössle M. Synthesis 2007, 1279 - General reviews about aluminum organyls:
-
4a
Mole T.Jeffery EA. Organoaluminum Compounds Elvesier; Amsterdam: 1972. -
4b
Zweifel G.Miller JA. Org. React. 1984, 32: 375 -
4c
Maruoka K.Yamamoto H. Tetrahedron 1988, 44: 5001 -
4d
Oishi M. In Science of Synthesis Vol. 7:Yamamoto H. Thieme; Stuttgart: 2004. p.261 -
5a
Negishi E.-i.Kondakov DY. Chem. Soc. Rev. 1996, 25: 417 -
5b
Dzhemilev UM.Ibragimov AG. Russ. Chem. Rev. 2000, 69: 121 - Recent examples:
-
6a
Negishi E.-i.Tan Z.Liang B.Novak T. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 5782 -
6b
Langille NF.Jamison TF. Org. Lett. 2006, 8: 3761 -
6c
Lipshutz BH.Butler T.Lower A. J. Am. Chem. Soc. 2006, 128: 15396 -
6d
Zhu G.Negishi E.-i. Org. Lett. 2007, 9: 2771 -
6e
Lipshutz BH.Butler T.Lower A.Servesko J. Org. Lett. 2007, 9: 3737 - 7
Pitzer KS.Gutowsky HS. J. Am. Chem. Soc. 1946, 68: 2204 - 8
Henrickson CH.Duffy D.Eyman DF. Inorg. Chem. 1968, 7: 1047 - 9
Negishi E.-i. J. Organomet. Chem. Libr. 1976, 1: 93 -
10a
Ashby EC.Laemmle JT. Chem. Rev. 1975, 75: 521 -
10b
Ooi T.Takahashi M.Maruoka K. Angew. Chem., Int. Ed. Engl. 1998, 37: 835 ; Angew. Chem. 1998, 110, 875 - 11
Gilman H.Kirby RH. J. Am. Chem. Soc. 1941, 63: 2046 -
12a
Wittig G.Bub O. Justus Liebigs Ann. Chem. 1950, 566: 113 -
12b
Wittig G. Angew. Chem. 1958, 70: 65 - 13
Hudson RF. Angew. Chem., Int. Ed. Engl. 1973, 12: 36 ; Angew. Chem. 1973, 85, 63 - 14
Lyons AR.Catterall E. J. Organomet. Chem. 1970, 25: 351 - 15
Baba Y. Bull. Chem. Soc. Jpn. 1968, 41: 928 - 16 Review:
Gruter G.-JM.van Klink GPM.Akkerman OS.Bickelhaupt F. Chem. Rev. 1995, 95: 2405 - For reactions with carbonyl compounds, see:
-
17a
Baidossi W.Rosenfeld A.Wassermann BC.Schutte S.Schumann H.Blum J. Synthesis 1996, 1127 -
17b
Schumann H.Kaufmann J.Dechert S.Schmalz H.-G.Velder J. Tetrahedron Lett. 2001, 42: 5405 -
17c
Schumann H.Kaufmann J.Dechert S.Schmalz H.-G. Tetrahedron Lett. 2002, 43: 3507 - For transition-metal-catalyzed cross-coupling reactions, see:
-
18a
Blum J.Gelman D.Baidossi W.Shakh E.Rosenfeld A.Aizenshtat Z.Wassermann BC.Frick M.Heymer B.Schutte S.Wernik S.Schumann H. J. Org. Chem. 1997, 62: 8681 -
18b
Schumann H.Kaufmann J.Schmalz H.-G.Böttcher A.Gotov B. Synlett 2003, 1783 ; and references cited therein - 19
Ashby EC.Noding SA. J. Org. Chem. 1979, 44: 4792 -
20a
Giacomelli G.Caporusso AM.Lardicci L. Tetrahedron Lett. 1981, 22: 3663 -
20b
Caporusso AM.Giacomelli G.Lardicci L. J. Org. Chem. 1982, 47: 4640 - 21
Kabalka GW.Daley RF. J. Am. Chem. Soc. 1973, 95: 4428 -
22a
House HO.Fischer WF. J. Org. Chem. 1969, 34: 3615 -
22b
Corey EJ.Beames DJ. J. Am. Chem. Soc. 1972, 94: 7210 - 23
Hooz J.Layton RB. J. Am. Chem. Soc. 1971, 93: 7320 - 24 For an application in natural product synthesis, see:
Bestmann H.-J.Schmidt M. Tetrahedron Lett. 1985, 26: 71 - 25
Newton RF.Reynolds DP.Greenwood J.Scheinmann F. J. Chem. Soc., Perkin Trans. 1 1980, 2346 - 26
Hooz J.Layton RB. Can. J. Chem. 1973, 51: 2098 - 27
Negishi E.-i.van Horn DE.Yoshida T. J. Am. Chem. Soc. 1985, 107: 6639 - 28
Hashimoto S.-i.Shinoda T.Ikegami S. Tetrahedron Lett. 1986, 27: 2885 - 29 Similar observations have been made in reactions with epoxides:
Sasaki M.Tanino K.Miyashita M. Org. Lett. 2001, 3: 1765 -
30a
Pappo R.Collins PW. Tetrahedron Lett. 1972, 13: 2627 -
30b
Collins PW.Dajani EZ.Bruhn MS.Brown CH.Palmer JR.Pappo R. Tetrahedron Lett. 1975, 16: 4217 - 31 For an application towards the synthesis of neocarzinostatin, see:
Caddick S.Delisser VM. Tetrahedron Lett. 1997, 38: 2355 - 32
Yoshino T.Okamoto S.Sato F. J. Org. Chem. 1991, 56: 3205 -
33a
Yakura T.Tanaka K.Iwamoto M.Nameki M.Ikeda M. Synlett 1999, 1313 -
33b
Yakura T.Tanaka K.Kitano T.Uenishi J.-i.Ikeda M. Tetrahedron Lett. 2000, 56: 7715 -
34a
Carreno MC.Pérez-González M.Ribagorda M. J. Org. Chem. 1996, 61: 6758 -
34b
Carreno MC.Pérez-González M.Ribagorda M.Houk KN. J. Org. Chem. 1998, 63: 3687 -
34c
Carreno MC.Pérez-González M.Ribagorda M.Somoza A.Urbano A. Chem. Commun. 2002, 3052 -
35a
Bernady KF.Weiss MJ. Tetrahedron Lett. 1972, 13: 4083 -
35b
Bernady KF.Poletto JF.Weiss MJ. Tetrahedron Lett. 1975, 16: 765 -
35c
Bernady KF.Floyd MB.Poletto JF.Weiss MJ. J. Org. Chem. 1979, 44: 1438 -
35d
Skotnicki JS.Schaub RE.Bernady KF.Siuta GJ.Poletto JF.Weiss MJ.Dessy F. J. Med. Chem. 1977, 20: 1551 -
36a
Ahn JH.Joung MJ.Yoon NM. J. Org. Chem. 1995, 60: 6173 -
36b
Joung MJ.Ahn JH.Yoon NM. J. Org. Chem. 1996, 61: 4472 - 37
Evans DA.Chapman KT.Bishaha J. J. Am. Chem. Soc. 1988, 110: 1238 -
38a
Kunz H.Pees KJ. J. Chem. Soc., Perkin Trans. 1 1989, 1168 -
38b
Rück K.Kunz H. Angew. Chem., Int. Ed. Engl. 1991, 30: 694 ; Angew. Chem. 1991, 103, 712 -
38c
Rück K.Kunz H. Synlett 1992, 343 -
38d
Rück K.Kunz H. Synthesis 1993, 1018 -
38e
Rück-Braun K.Stamm A.Engel S.Kunz H. J. Org. Chem. 1997, 62: 967 -
38f
Elzner S.Maas S.Engel S.Kunz H. Synthesis 2004, 2153 - 39
Clemo NG.Pattenden G. J. Chem. Soc., Perkin Trans. 1 1986, 2133 -
40a
Maas S.Stamm A.Kunz H. Synthesis 1999, 1792 -
40b
Maas S.Kunz H. J. Prakt. Chem. 2000, 342: 396 -
41a
Carretero JC.Rojo J. Tetrahedron Lett. 1992, 33: 7407 -
41b
Rojo J.García M.Carretero JC. Tetrahedron 1993, 49: 9787 -
42a
Jeffery EA.Meisters A.Mole T. Aust. J. Chem. 1974, 27: 2569 -
42b
Meisters A.Mole T. Aust. J. Chem. 1974, 27: 1655 -
43a
Bagnell L.Jeffery EA.Meisters A.Mole T. Aust. J. Chem. 1975, 28: 801 -
43b
Bagnell L.Meisters A.Mole T. Aust. J. Chem. 1975, 28: 817 -
43c
Jeffery EA.Meisters A.Mole T. J. Organomet. Chem. 1974, 74: 365 -
43d
Jeffery EA.Meisters A.Mole T. J. Organomet. Chem. 1974, 74: 373 - 44
Ashby EC.Heinsohn G. J. Org. Chem. 1974, 39: 3297 -
45a
Westermann J.Nickisch K. Angew. Chem., Int. Ed. Engl. 1993, 32: 1368 ; Angew. Chem. 1993, 105, 1429 -
45b
Kabbara J.Flemming S.Nickisch K.Neh H.Westermann J. Tetrahedron Lett. 1994, 35: 8591 -
45c
Kabbara J.Flemming S.Nickisch K.Neh H.Westermann J. Chem. Ber. 1994, 127: 1489 -
45d
Kabbara J.Flemming S.Nickisch K.Neh H.Westermann J. Tetrahedron 1995, 51: 743 -
45e
Kabbara J.Flemming S.Nickisch K.Neh H.Westermann J. Synlett 1994, 679 -
45f
Flemming S.Kabbara J.Nickisch K.Neh H.Westermann J. Synthesis 1995, 317 -
45g
Westermann J.Neh H.Nickisch K. Chem. Ber. 1996, 129: 963 - 46 For a discussion on the effect of silyl chlorides in copper-catalyzed 1,4-additions, see:
Nakamura E.Mori S. Angew. Chem. Int. Ed. 2000, 39: 3750 ; Angew. Chem. 2000, 112, 3902 - 47
Lipshutz BL.Dimock SH.James B. J. Am. Chem. Soc. 1993, 115: 9283 - 48
Westermann J.Imbery U.Nguyen AT.Nickisch K. Eur. J. Inorg. Chem. 1998, 295 -
49a
Hansen RT.Carr DB.Schwartz J. J. Am. Chem. Soc. 1978, 100: 2244 -
49b
Schwartz J.Carr DB.Hansen RT.Dayrit FM. J. Org. Chem. 1980, 45: 3053 -
49c
Dayrit FM.Schwartz J. J. Am. Chem. Soc. 1981, 103: 4466 -
50a
Ireland RE.Wipf P. J. Org. Chem. 1990, 55: 1425 -
50b
Wipf P.Smitrovich JH.Moon C.-W. J. Org. Chem. 1992, 57: 3178 - 51
Lipshutz BH.Dimock SH. J. Org. Chem. 1991, 56: 5761 - 52 Higher catalyst loadings or a large excess of ZnMe2 are frequently necessary:
Boezio AA.Pytkowicz J.Coté A.Charette AB. J. Am. Chem. Soc. 2003, 125: 14260 -
53a
Takemoto Y.Kuraoka S.Hamaue N.Iwata S. Tetrahedron: Asymmetry 1996, 7: 993 -
53b
Takemoto Y.Kuraoka S.Hamaue N.Aoe K.Hiramatsu H.Iwata S. Tetrahedron 1996, 52: 14177 -
53c
Takemoto Y.Kuraoka S.Ohra T.Yonetoku Y.Iwata C. Chem. Commun. 1996, 1655 -
53d
Takemoto Y.Kuraoka S.Ohra T.Yonetoku Y.Iwata C. Tetrahedron 1997, 53: 603 -
54a
Bennett SMW.Brown SM.Muxworthy JP.Woodward S. Tetrahedron Lett. 1999, 40: 1767 -
54b
Bennett SMW.Brown SM.Cunningham A.Dennis MR.Muxworthy JP.Oakley MA.Woodward S. Tetrahedron 2000, 56: 2847 -
54c
Fraser PK.Woodward S. Chem. Eur. J. 2003, 9: 776 -
54d
Woodward S. Synlett 2007, 1490 - 55
Diéguez M.Deerenberg S.Pàmies O.Claver C.van Leeuwen PWNM.Kamer P. Tetrahedron: Asymmetry 2000, 11: 3161 -
56a
Liang L.Chan ASC. Tetrahedron: Asymmetry 2002, 13: 1393 -
56b
Su L.Li X.Chan WL.Jia X.Chan ASC. Tetrahedron: Asymmetry 2003, 14: 1865 - 57
Mata Y.Diéguez M.Pàmies O.Biswas K.Woodward S. Tetrahedron: Asymmetry 2007, 18: 1613 - 58
Feringa BL. Acc. Chem. Res. 2000, 33: 346 -
59a
Alexakis A.Albrow V.Biswas K.d’Augustin M.Prieto O.Woodward S. Chem. Commun. 2005, 2843 -
59b
Albrow VE.Blake AJ.Fryatt R.Wilson C.Woodward S. Eur. J. Org. Chem. 2006, 2549 -
59c
Vuagnoux-d’Augustin M.Alexakis A. Tetrahedron Lett. 2007, 48: 7408 -
60a
d’Augustin M.Palais L.Alexakis A. Angew. Chem. Int. Ed. 2005, 44: 1376 ; Angew. Chem. 2005, 117, 1400 -
60b
Vuagnoux-d’Augustin M.Alexakis A. Chem. Eur. J. 2007, 13: 9647 -
60c
Vuagnoux-d’Augustin M.Kehrli S.Alexakis A. Synlett 2007, 2057 - 61
Li K.Alexakis A. Angew. Chem. Int. Ed. 2006, 45: 7600 ; Angew. Chem. 2006, 118, 7762 - 62
Gladiali S.Pulacchini S.Fabbri D.Manassero M.Sansoni M. Tetrahedron: Asymmetry 1998, 9: 391 - 63
Fuchs N.d’Augustin M.Humam M.Alexakis A.Taras R.Gladiali S. Tetrahedron: Asymmetry 2005, 16: 3143 - 64
Bournaud C.Falciola C.Lecourt T.Rosset S.Alexakis A.Micouin L. Org. Lett. 2006, 8: 3581 - 65
Palais L.Mikhel IS.Bournaud C.Micouin L.Falciola CA.Vuagnoux-d’Augustin M.Rosset S.Bernardelli G.Alexakis A. Angew. Chem. Int. Ed. 2007, 46: 7462 ; Angew. Chem. 2007, 119, 7606 -
66a
Pineschi M.del Moro F.Gini F.Minnaard AJ.Feringa BL. Chem. Commun. 2004, 1244 -
66b
Pineschi M.del Moro F.di Bussolo V.Macchia F. Adv. Synth. Catal. 2006, 348: 301 - 67
Alexakis A.Benhaim C. Tetrahedron: Asymmetry 2001, 12: 1151 -
68a
Eilitz U.Leßmann F.Seidelmann O.Wendisch V. Tetrahedron: Asymmetry 2003, 14: 3095 -
68b
Polet D.Alexakis A. Tetrahedron Lett. 2005, 46: 1529 - 69
Kwak Y.-S.Corey EJ. Org. Lett. 2004, 6: 3385 - 70
Nishikata T.Yamamoto Y.Gridnev ID.Miyaura N. Organometallics 2005, 24: 5025 -
71a
Hayashi T.Yamasaki K. Chem. Rev. 2003, 103: 2829 -
71b
Fagnou K.Lautens M. Chem. Rev. 2003, 103: 169 -
71c
Hayashi T. Bull. Chem. Soc. Jpn. 2004, 77: 13 - 72
Siewert J.Sandmann R.von Zezschwitz P. Angew. Chem. Int. Ed. 2007, 46: 7122 ; Angew. Chem. 2007, 119, 7252 -
73a
Jeon S.-J.Walsh P. J. Am. Chem. Soc. 2003, 125: 9544 -
73b
Li H.García C.Walsh P. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 5425 - 74
Walsh PJ. Acc. Chem. Res. 2003, 36: 739 - 75
Chan ASC.Zhang F.-Y.Yip C.-W. J. Am. Chem. Soc. 1997, 119: 4080 - 76
Waltz KM.Carroll PJ.Walsh PJ. Organometallics 2004, 23: 127 -
77a
Lu J.-F.You J.-S.Gau H.-M. Tetrahedron: Asymmetry 2000, 11: 2531 -
77b
You J.-S.Hsieh S.-H.Gau H.-M. Chem. Commun. 2001, 1546 - 78 The mechanism of the analogous reaction with ZnEt2 has been elucidated:
Wu K.-H.Gau H.-M. Organometallics 2004, 23: 580 -
79a
Mukaiyama T.Minowa N.Oriyama T.Narasaka K. Chem. Lett. 1986, 97 -
79b
Minowa N.Mukaiyama T. Bull. Chem. Soc. Jpn. 1987, 60: 3697 - 80 For a general review about allylations of carbonyl compounds, see:
Denmark SE.Fu J. Chem. Rev. 2003, 103: 2763 -
81a
Bauer T.Gajewiak J. Tetrahedron: Asymmetry 2005, 16: 851 -
81b
Bauer T.Gajewiak J. Tetrahedron 2004, 60: 9163 - 82
Tian Y.Yang QC.Mak TCW.Chan KS. Tetrahedron 2002, 58: 3951 - 83 For the concept of fluorous biphasic catalysis, see:
Horvath IT.Rabai J. Science 1994, 266: 72 - 84
Pagenkopf BL.Carreira EM. Tetrahedron Lett. 1998, 39: 9593 - 85
Srini V.Del Mel J.Oliver JP. Organometallics 1989, 8: 827 - 86
Wu K.-H.Gau H.-M. J. Am. Chem. Soc. 2006, 128: 14808 - 87
von Zezschwitz P. Nachr. Chem. 2008, 56: 38 - 88
Chen C.-A.Wu K.-H.Gau H.-M. Angew. Chem. Int. Ed. 2007, 46: 5373 ; Angew. Chem. 2007, 119, 5469 - 89
Ichiyanagi T.Kuniyama S.Shimizu M.Fujisawa T. Chem. Lett. 1998, 1033 -
90a
Biswas K.Prieto O.Goldsmith PJ.Woodward S. Angew. Chem. Int. Ed. 2005, 44: 2232 ; Angew. Chem. 2005, 117, 2272 -
90b
Biswas K.Chapron A.Cooper T.Fraser PK.Novak A.Prieto O.Woodward S. Pure Appl. Chem. 2006, 78: 511 -
90c
Mata Y.Diéguez M.Pàmies O.Woodward S. J. Org. Chem. 2006, 71: 8159 - 91
Shannon J.Bernier D.Rawson D.Woodward S. Chem. Commun. 2007, 3945