Subscribe to RSS
DOI: 10.1055/s-2008-1067102
Development of a Tandem Base-Catalyzed, Triphenylphosphine-Mediated Disulfide Reduction-Michael Addition
Publication History
Publication Date:
21 May 2008 (online)
Abstract
A tandem disulfide reduction-Michael addition was developed using both free and polymer-bound triphenylphosphine as the reducing agent. The procedure was applied to intermolecular systems for the synthesis of arylsulfanyl- and alkylsulfanyl-substituted propanoates and related ketones, and to an intramolecular system for the synthesis of a benzothiazepinone derivative.
Key words
Michael additions - reductions - thiols - triphenylphosphine - benzothiazepinones
-
1a
Kanda Y.Ashizawa T.Kawashima K.Ikeda S.Tamaoki T. Bioorg. Med. Chem. Lett. 2003, 13: 455 -
1b
Cai Z.Zhou W.Sun L. Bioorg. Med. Chem. 2007, 15: 7809 -
1c
Tyrkov A.Urlyapova N.Daudova A. Pharm. Chem. J. 2006, 40: 377 -
1d
Kendall J.Rewcastle G.Frederick R.Mawson C.Denny W.Marshall E.Baguley B.Chaussade C.Jackson S.Shepherd P. Bioorg. Med. Chem. 2007, 15: 7677 -
1e
Lombart HG.Feyfant E.Joseph-McCarthy D.Huang A.Lovering F.Sun LH.Zhu Y.Zeng CM.Zhang Y.Levin J. Bioorg. Med. Chem. Lett. 2007, 17: 4333 -
2a
Wang X.Guo Z. Anti-Cancer Agents Med. Chem. 2007, 7: 19 -
2b
Jacob C. Nat. Prod. Rep. 2006, 23: 851 -
2c
Ariga T.Seki T. BioFactors 2006, 26: 93 -
2d
Motohashi N.Kawase M.Satoh K.Sakagami H. Curr. Drug Targets 2006, 7: 1055 -
3a
Liu Y.Zhang HY.Chen LX.He XW.Wada T.Inoue Y. J. Org. Chem. 2000, 65: 2870 -
3b
Yano T.Wasada-Tsutsui Y.Arii H.Yamaguchi S.Funahashi Y.Ozawa T.Masuda H. Inorg. Chem. 2007, 46: 10345 -
3c
Calatayud D.López-Torres E.Mendiola M. Inorg. Chem. 2007, 46: 10434 -
3d
Enders D.Klumpen T. J. Organomet. Chem. 2001, 637: 698 - 4
van Zanten A.Oudijk M.Nohlmans-Paulssen M.van der Meer Y.Girbes A.Polderman K. Br. J. Clin. Pharmacol. 2007, 63: 100 -
5a
Brown HC.Midland MM. J. Am. Chem. Soc. 1971, 93: 3291 -
5b
Pelter A.Pardasani R.Pardasani P. Tetrahedron 2000, 56: 7339 -
5c
Kneisel F.Knochel P. Synlett 2002, 1799 -
6a
Munavalli S.Rossman DI.Rohrbaugh DK.Ferguson CP. J. Fluorine Chem. 1993, 61: 147 -
6b
Munavalli S.Rossman DI.Rohrbaugh DK.Ferguson CP. J. Fluorine Chem. 1993, 61: 155 -
6c
Negishi E. In Organometallics in Organic Synthesis Wiley; New York: 1980. p.243-247 -
7a
Menichetti S.Nativi C. In Targets in Heterocyclic Systems - Chemistry and Properties Vol. 7:Attanasi OA.Spinelli D. Società Chimica Italiana; Rome: 2003. p.108-139 -
7b
Bartolozzi A.Capozzi G.Menichetti S.Nativi C. Org. Lett. 2000, 2: 251 -
7c
Bartolozzi A.Capozzi G.Menichetti S.Nativi C. Eur. J. Org. Chem. 2001, 2083 -
7d
Li GM.Niu S.Segi M.Tanaka K.Nakajima T.Zingaro RA.Reibenspies JH.Hall MB. J. Org. Chem. 2000, 65: 6601 -
7e
Osborn HMI.Coisson D. Mini-Rev. Org. Chem. 2004, 1: 41 -
7f
Ogurtsov V.Rakitin O.Rees C.Smolentsev A.Belyakov P.Golovanov D.Lyssenko K. Org. Lett. 2005, 7: 791 -
8a
Ueda M.Uchiyama K.Kano T. Synthesis 1984, 323 -
8b
Graybill BM. J. Org. Chem. 1967, 32: 2931 -
9a
Carlson R.Lundstedt T. Acta Chem. Scand., Ser. B 1987, 41: 164 -
9b
Lundstedt T.Carlson R.Shabana R. Acta Chem. Scand., Ser. B 1987, 41: 157 -
9c
Oae S. In The Organic Chemistry of SulfurOae S. Plenum; New York: 1977. p.58-63 -
10a
Ranu B.Dey S.Hajra A. Tetrahedron 2003, 59: 2417 -
10b
Merajuddin Baag M.Sahoo M.Puranik V.Argade N. Synthesis 2007, 457 -
10c
Hummel G.Jobron L.Hindsgaul O. J. Carbohydr. Chem. 2003, 22: 781 -
10d
Kawatsura M.Komatsu Y.Yamamoto M.Hayase S.Itoh T. Tetrahedron Lett. 2007, 48: 6480 -
10e
Zhao Y.Ge Z.Cheng T.Li R. Synlett 2007, 1529 -
10f
Hiemstra C.van der Aa L.Zhong Z.Dijkstra P.Feijen J. Biomacromolecules 2007, 8: 1548 -
10g
Nilsson K.Mellin L.Nederberg F.Bowden T. Macromolecules 2007, 40: 901 -
10h
Meciarova M.Toma S. Lett. Org. Chem. 2006, 3: 794 -
10i
Manickam G.Sundararajan G. Tetrahedron 1999, 55: 2721 -
10j
Mukherjee C.Misra AK. J. Carbohydr. Chem. 2007, 26: 213 -
10k
Movassagh B.Zakinezhad Y. Z. Naturforsch., B 2006, 61: 47 -
11a
Prabhu K.Sivanand P.Chandrasekaran S. Angew. Chem. Int. Ed. 2000, 39: 4316 -
11b
Ranu B. Synth. Commun. 2007, 37: 1517 -
11c
Ranu B.Mandal T. Can. J. Chem. 2006, 84: 762 -
11d
Ranu B.Mandal T. Synlett 2004, 1239 -
11e
Friend C.Simpkins N.Anson M.Polywka M. Tetrahedron 1998, 54: 2801 -
11f
Taniguchi Y.Maruo M.Takaki K.Fujiwara Y. Tetrahedron Lett. 1994, 35: 7789 -
11g
Zheng X.Xu X.Zhang Y. Synlett 2003, 2062 -
12a
Ogawa A.Nishiyama Y.Kambe N.Murai S.Sonoda N. Tetrahedron Lett. 1987, 28: 3271 -
12b
Katritzky AR.Rogovoy BV.Chassaing C.Vvedensky V.Forood B.Flatt B.Nakai H. J. Heterocycl. Chem. 2000, 37: 1655 -
13a
Danehy JP.Hunter WE. J. Org. Chem. 1967, 32: 2047 -
13b
Maiti SN.Spevak P.Singh MP.Micetich RG.Reddy AVN. Synth. Commun. 1988, 18: 575 -
13c
Brown HC.Nazer B.Cha JS. Synthesis 1984, 498 -
13d
Gladysz JA.Wong VK.Jick BS. Tetrahedron 1979, 35: 2329 -
13e
Zhong W.Zhang Y. Tetrahedron Lett. 2001, 42: 3125 -
13f
Reddy GVS.Rao GV.Iyengar DS. Synth. Commun. 2000, 30: 859 -
13g
Singh R.Lamoureux GV.Lees WJ.Whitesides GM. Methods Enzymol. 1995, 251: 167 - 14
Overman LE.Smoot J.Overman JD. Synthesis 1974, 59 -
16a
Krapcho J.Turk CF.Piala JJ. J. Med. Chem. 1968, 11: 361 -
16b
Ohno S.Izumi K.Mizukoshi K.Kato K.Hori M. Chem. Pharm. Bull. 1983, 31: 1780 -
16c
Kugita H.Inoue H.Ikezaki M.Konda M.Takeo S. Chem. Pharm. Bull. 1971, 19: 595 -
16d
Tseng TC.Wu MJ. Tetrahedron: Asymmetry 1995, 6: 1633 -
17a
Hansson L.Hedner T.Lund-Johansen P.Kjeldsen S.Lindholm L.Syvertsen J.Lanke J.de Faire U.Dahlöf B.Karlberg B. Lancet 2000, 356: 359 -
17b
Khatik GL.Kumar R.Chakraborti AK. Synthesis 2007, 541 -
17c
Kodomari M.Noguchi T.Aoyama T. Synth. Commun. 2004, 34: 1783 -
17d
Bertozzi F.Gundersen BV.Gustafsson M.Olsson R. Org. Lett. 2003, 5: 1551 -
17e
Cavalli A.Poluzzi E.De Ponti F.Recanatini M. J. Med. Chem. 2002, 45: 3844 -
18a
Solinas A.Taddei M. Synthesis 2007, 2409 -
18b
Kirschning A.Monenschein H.Wittenberg R. Angew. Chem. Int. Ed. 2001, 40: 650 - 19
Nakahashi A.Fujita M.Miyoshi E.Umeyama T.Naka K.Chujo Y. J. Polym. Sci., Part A: Polym. Chem. 2007, 45: 3580 - 20
Saloutina LV.Zapevalov AYa.Saloutin VI.Kodess MI.Kirichenko VE.Pervova MG.Chupakhin ON. Russ. J. Org. Chem. (Engl. Transl.) 2006, 42: 1307
References
The 1H NMR spectra of the isolated products confirmed the presence of a free hydroxy group as we would expect for compounds derived by thiol addition. The thiol moiety of 4-sulfanylphenol is the strongest and the most-reactive nucleophile in the compound as it has a pK a of 6.8 compared with the hydroxy group pK a of 12.4. However, the phenol is still a reactive species that could possibly undergo Michael addition under basic conditions if the disulfide reduction was too slow and the more-reactive thiol was not formed quickly enough. To confirm that the disulfide reduction occurred first in our protocol and that side products derived from a phenol addition were not formed, we repeated the experiment reported in entry 1 of Table [1] without adding triphenylphosphine. In this case, phenol addition was not observed, even after heating the reaction overnight.
211H NMR spectra in accordance with data reported in the Wiley Subscription Services Inc., USA.