Semin Musculoskelet Radiol 2008; 12(1): 062-071
DOI: 10.1055/s-2008-1067938
Published by Thieme Medical Publishers

Imaging of Stress Injuries of the Pelvis

Scot E. Campbell1 , Ryan S. Fajardo1
  • 1Department of Radiology, Musculoskeletal Imaging Section, Wilford Hall Medical Center, Lackland Air Force Base, San Antonio, Texas
Further Information

Publication History

Publication Date:
01 April 2008 (online)

ABSTRACT

Stress fractures are common, representing the final stage in a continuum of bone response to continued mechanical damage. Encompassing fatigue- and insufficiency-type fractures, stress fractures of the pelvis are likely underreported. Radiographs are insensitive to stress injuries, particularly those in the pelvis, whereas scintigraphy and magnetic resonance imaging are exquisitely sensitive. In this article we discuss the pathophysiology and imaging appearances of stress injuries of the pelvis and sacrum. Relevant literature regarding risk factors, problem-solving issues, and an imaging algorithm are discussed, with the goal of improving accuracy in the diagnosis of these common injuries.

REFERENCES

  • 1 Matheson G O, Clement D B, McKenzie D C, Taunton J E, Lloyd-Smith D R, MacIntyre J G. Stress fractures in athletes: a study of 320 cases.  Am J Sports Med. 1987;  15 46-58
  • 2 Wolff J. Das Gesetz der Transformation der Knochen. Berlin; Hirschwald 1892
  • 3 Jones B H, Harris J MCA, Vinh T N, Rubin C. Exercise-induced stress fractures and stress reactions of bone: epidemiology, etiology, and classification.  Exerc Sport Sci Rev. 1989;  17 379-422
  • 4 Frost H M. Wolff's law and bone's structural adaptations to mechanical usage: an overview for clinicians.  Angle Orthod. 1994;  64 175-178
  • 5 Burr D B, Martin R B, Schaffler M B, Radin E L. Bone remodeling in response to in vivo fatigue microdamage.  J Biomech. 1985;  18 189-200
  • 6 Martin R B, Burr D B. A hypothetical mechanism for the stimulation of osteonal remodeling by fatigue damage.  J Biomech. 1982;  15 137-139
  • 7 O'Brien F J, Taylor D, Lee T C. Microcrack accumulation at different intervals during fatigue testing of compact bone.  J Biomech. 2003;  36 973-980
  • 8 Boyce T M, Fyhrie D P, Glotkowski M C, Radin E L, Schaffler M B. Damage type and strain mode associations in human compact bone bending fatigue.  J Orthop Res. 1998;  16 322-329
  • 9 Forwood M R, Parker A W. Microdamage in response to repetitive torsional loading in the rat tibia.  Calcif Tissue Int. 1989;  45 47-53
  • 10 Frost H M. Some ABC's of skeletal pathophysiology. V. Microdamage physiology.  Calcif Tissue Int. 1991;  49 229-231
  • 11 Johnson L C, Stradford H T, Geis R W, Dineen J R, Kerley E. Histogenesis of stress fractures.  J Bone Joint Surg Am. 1963;  45A 1542
  • 12 Anderson M W, Greenspan A. Stress fractures.  Radiology. 1996;  199 1-12
  • 13 Stanitski C L, McMaster J H, Scranton P E. On the nature of stress fractures.  Am J Sports Med. 1978;  6 391-396
  • 14 Arendt E A, Griffiths H J. The use of MR imaging in the assessment and clinical management of stress reactions of bone in high-performance athletes.  Clin Sports Med. 1997;  16 291-306
  • 15 Schaffler M B, Choi K, Milgrom C. Aging and matrix microdamage accumulation in human compact bone.  Bone. 1995;  17 521-525
  • 16 Fredericson M, Bergman A G, Hoffman K L, Dillingham M S. Tibial stress reaction in runners: correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system.  Am J Sports Med. 1995;  23 472-481
  • 17 Hulkko A, Orava S. Stress fractures in athletes.  Int J Sports Med. 1987;  8 221-226
  • 18 Pentecost R L, Murray R A, Brindley H H. Fatigue, insufficiency, and pathologic fractures.  JAMA. 1964;  187 1001-1004
  • 19 Kiuru M J, Pihlajamaki H K, Perkio J P, Ahovuo J A. Dynamic contrast-enhanced MR imaging in symptomatic bone stress of the pelvis and the lower extremity.  Acta Radiol. 2001;  42 277-285
  • 20 Milgrom C, Giladi M, Stein M et al.. Stress fractures in military recruits: a prospective study showing an unusually high incidence.  J Bone Joint Surg Br. 1985;  67 732-735
  • 21 Kiuru M J, Pihlajamaki H K, Ahovuo J A. Fatigue stress injuries of the pelvic bones and proximal femur: evaluation with MR imaging.  Eur Radiol. 2003;  13 605-611
  • 22 Hardy D C, Delince P E, Yasik E, Lafontaine M A. Stress fracture of the hip: an unusual complication of total knee arthroplasty.  Clin Orthop Relat Res. 1992;  281 140-144
  • 23 Ahovuo J A, Kiuru M J, Visuri T. Fatigue stress fractures of the sacrum: diagnosis with MR imaging.  Eur Radiol. 2004;  14 500-505
  • 24 Theodorou S J, Theodorou D J, Schweitzer M E, Kakitsubata Y, Resnick D. Magnetic resonance imaging of para-acetabular insufficiency fractures in patients with malignancy.  Clin Radiol. 2006;  61 181-190
  • 25 Grangier C, Garcia J, Howarth N R, May M, Rossier P. Role of MRI in the diagnosis of insufficiency fractures of the sacrum and acetabular roof.  Skeletal Radiol. 1997;  26 517-524
  • 26 Sallis R E, Jones K. Stress fractures in athletes: how to spot this underdiagnosed injury.  Postgrad Med. 1991;  89 185-188
  • 27 Greaney R B, Gerber F H, Laughlin R L et al.. Distribution and natural history of stress fractures in U.S. Marine recruits.  Radiology. 1983;  146 339-346
  • 28 Nielsen M B, Hansen K, Holmes P, Dyrbye M. Tibial periosteal reactions in soldiers. A scintigraphic study of 20 cases of lower leg pain.  Acta Orthop Scand. 1991;  62 531-534
  • 29 Savoca C J. Stress fractures: a classification of the earliest radiographic signs.  Radiology. 1971;  100 519-524
  • 30 Mulligan M E. The “gray cortex”: an early sign of stress fracture.  Skeletal Radiol. 1995;  24 201-203
  • 31 Markey K L. Stress fractures.  Clin Sports Med. 1987;  6 405-425
  • 32 Ammann W, Matheson G O. Radionuclide bone imaging in detection of stress fractures.  Clin J Sport Med. 1991;  1 115-122
  • 33 Soubrier M, Dubost J J, Boisgard S et al.. Insufficiency fracture. A survey of 60 cases and review of the literature.  Joint Bone Spine. 2003;  70 209-218
  • 34 Chen C K, Liang H L, Lai P H et al.. Imaging diagnosis of insufficiency fracture of the sacrum.  Zhonghua Yi Xue Za Zhi (Taipei). 1999;  62 591-597
  • 35 Horev G, Koreneich N Z, Grunebaum M. The enigma of stress fractures in the pediatric age: clarification or confusion through the new imaging modalities.  Pediatr Radiol. 1990;  20 469-471
  • 36 Zwas S T, Elkanovitch R, Frank G. Interpretation and classification of bone scintigraphic findings in stress fractures.  J Nucl Med. 1987;  28 452-457
  • 37 Churches A E, Howlett C R. Functional adaptation of bone in response to sinusoidal varying controlled compressive loading of the ovine metacarpus.  Clin Orthop Relat Res. 1982;  168 265-280
  • 38 Roub L W, Gumerman L W, Hanley Jr E N et al.. Bone stress: a radionuclide imaging perspective.  Radiology. 1979;  132 431-438
  • 39 Schneider R, Yacovone J, Ghelman B. Unsuspected sacral fractures: detection by radionuclide bone scanning.  AJR Am J Roentgenol. 1985;  144 337-341
  • 40 Rupani H D, Holder L E, Espinola D A et al.. Three-phase radionuclide bone imaging in sports medicine.  Radiology. 1985;  156 187-196
  • 41 Kiuru M J, Pihlajamaki H K, Hietanen H J, Ahovuo J A. MR imaging, bone scintigraphy, and radiography in bone stress injuries of the pelvis and the lower extremity.  Acta Radiol. 2002;  43 207-212
  • 42 Slocum K A, Gorman J D, Puckett M L, Jones S B. Resolution of abnormal MR signal intensity in patients with stress fractures of the femoral neck.  AJR Am J Roentgenol. 1997;  168 1295-1299
  • 43 Stafford S A, Rosenthal D I, Gebhardt M C, Brady T J, Scott J A. MRI in stress fracture.  AJR Am J Roentgenol. 1986;  147 553-556
  • 44 Bottomley P A, Foster T H, Argersinger R E, Pfeifer L M. A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age.  Med Phys. 1984;  11 425-448
  • 45 Rofstad E K, Steinsland E, Kaalhus O, Chang Y B, Høvik B, Lyng H. Magnetic resonance imaging of human melanoma xenografts in vivo: proton spin-lattice and spin-spin relaxation times versus fractional tumour water content and fraction of necrotic tumour tissue.  Int J Radiat Biol. 1994;  65 387-401
  • 46 Cameron I L, Ord V A, Fullerton G D. Characterization of proton NMR relaxation times in normal and pathological tissues by correlation with other tissue parameters.  Magn Reson Imaging. 1984;  2 97-106
  • 47 Kubo T, Yamamoto T, Inoue S et al.. Histological findings of bone marrow edema pattern on MRI in osteonecrosis of the femoral head.  J Orthop Sci. 2000;  5 520-523
  • 48 Berényi E, Szendrö Z, Rózsahegyl P, Bogner P, Sulyok E. Postnatal changes in water content and proton magnetic resonance relaxation times in newborn rabbit tissues.  Pediatr Res. 1996;  39 1091-1098
  • 49 Nissi M J, Toyras J, Laasanen M S et al.. Proteoglycan and collagen sensitive MRI evaluation of normal and degenerated articular cartilage.  J Orthop Res. 2004;  22 557-564
  • 50 Yamamoto T, Schneider R, Bullough P G. Subchondral insufficiency fracture of the femoral head: histopathologic correlation with MRI.  Skeletal Radiol. 2001;  30 247-254
  • 51 Ahovuo J A, Kiuru M J, Kinnunen J J, Haapamaki V, Pihlajamaki H K. MR imaging of fatigue stress injuries to bones: intra- and interobserver agreement.  Magn Reson Imaging. 2002;  20 401-406
  • 52 Pui M H, Chang S K. Comparison of inversion recovery fast spin-echo (FSE) with T2-weighted fat-saturated FSE and T1-weighted MR imaging in bone marrow lesion detection.  Skeletal Radiol. 1996;  25 149-152
  • 53 Pui M H, Goh P S, Choo H F, Fok E C. Magnetic resonance imaging of musculoskeletal lesions: comparison of three fat-saturation pulse sequences.  Australas Radiol. 1997;  41 99-102
  • 54 Hilfiker P, Zanetti M, Debatin J F, McKinnon G, Hodler J. Fast spin-echo inversion-recovery imaging versus fast T2-weighted spin-echo imaging in bone marrow abnormalities.  Invest Radiol. 1995;  30 110-114
  • 55 Schmid M R, Hodler J, Vienne P, Binkert C A, Zanetti M. Bone marrow abnormalities of foot and ankle: STIR versus T1-weighted contrast-enhanced fat-suppressed spin-echo MR imaging.  Radiology. 2002;  224 463-469
  • 56 Fayad L M, Kawamoto S, Kamel I R et al.. Distinction of long bone stress fractures from pathologic fractures on cross-sectional imaging: how successful are we?.  AJR Am J Roentgenol. 2005;  185 915-924
  • 57 Baur A, Stabler A, Bruning R et al.. Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures.  Radiology. 1998;  207 349-356
  • 58 Zhou X J, Leeds N E, McKinnon G C, Kumar A J. Characterization of benign and metastatic vertebral compression fractures with quantitative diffusion MR imaging.  AJNR Am J Neuroradiol. 2002;  23 165-170
  • 59 Castillo M, Arbelaez A, Smith J K, Fisher L L. Diffusion-weighted MR imaging offers no advantage over routine non-contrast MR imaging in the detection of vertebral metastases.  AJNR Am J Neuroradiol. 2000;  21 948-953
  • 60 Baur A, Stabler A, Arbogast S, Duerr H R, Barti R, Reiser M. Acute osteoporotic and neoplastic vertebral compression fractures: fluid sign at MR imaging.  Radiology. 2002;  225 730-735

Scot E CampbellM.D. 

Department of Radiology, Wilford Hall Medical Center

2200 Bergquist Dr., Ste. 1, Lackland AFB, TX 78236

Email: scot.campbell@lackland.af.mil