Thromb Haemost 2005; 94(01): 155-166
DOI: 10.1160/TH04-12-0792
Endothelium and Vascular Development
Schattauer GmbH

Isolated integrin β3 subunit cytoplasmic domains require membrane anchorage and the NPXY motif to recruit to adhesion complexes but do not discriminate between β1– and β3-positive complexes

Alessandro Foletti*
1   Laboratory of the Centre Pluridisciplinaire d’Oncologie (CePO), Swiss Institute for Experimental Cancer Research, Epalinges s/Lausanne, Switzerland
,
Gian Carlo Alghisi*1
1   Laboratory of the Centre Pluridisciplinaire d’Oncologie (CePO), Swiss Institute for Experimental Cancer Research, Epalinges s/Lausanne, Switzerland
,
Lionel Ponsonnet
1   Laboratory of the Centre Pluridisciplinaire d’Oncologie (CePO), Swiss Institute for Experimental Cancer Research, Epalinges s/Lausanne, Switzerland
,
Curzio Rüegg
1   Laboratory of the Centre Pluridisciplinaire d’Oncologie (CePO), Swiss Institute for Experimental Cancer Research, Epalinges s/Lausanne, Switzerland
› Author Affiliations
Further Information

Publication History

Received 12 December 2004

Accepted after resubmission 07 May 2005

Publication Date:
05 December 2017 (online)

Summary

Integrin adhesion receptors consist of non-covalently linked α and β subunits each of which contains a large extracellular domain, a single transmembrane domain and a short cytoplasmic tail. Engaged integrins recruit to focal structures globally termed adhesion complexes. The cytoplasmic domain of the β subunit is essential for this clustering. β1 and β3 integrins can recruit at distinct cellular locations (i.e. fibrillar adhesions vs focal adhesions, respectively) but it is not clear whether individual β subunit cytoplasmic and transmembrane domains are by themselves sufficient to drive orthotopic targeting to the cognate adhesion complex. To address this question, we expressed fulllength β3 transmembrane anchored cytoplasmic domains and truncated β3 cytoplasmic domains as GFP-fusion constructs and monitored their localization in endothelial cells. Membrane-anchored full-length β3 cytoplasmic domain and a β3 mutant lacking the NXXY motif recruited to adhesion complexes, while β3 mutants lacking the NPXY and NXXY motifs or the transmembrane domain did not. Replacing the natural β subunit transmembrane domain with an unrelated (i.e. HLA-A2 α chain) transmembrane domain significantly reduced recruitment to adhesion complexes. Transmembrane anchored β3 and cytoplasmic domain constructs, however, recruited without discrimination to β1– and β3-rich adhesions complexes. These findings demonstrate that membrane anchorage and the NPXY (but not the NXXY) motif are necessary for β3 cytoplasmic domain recruitment to adhesion complexes and that the natural transmembrane domain actively contributes to this recruitment. The β3 transmembrane and cytoplasmic domains alone are insufficient for orthotopic recruitment to cognate adhesion complexes.

1 Current address: Centre Hospitalier Universitaire Vaudois, CH-1011 Lausanne, Switzerland


* These authors contributed equally to this work.


 
  • References

  • 1 Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992; 69: 11-25.
  • 2 Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell 2002; 110: 673-87.
  • 3 Ruegg C, Mariotti A. Vascular integrins: pleiotropic adhesion and signaling molecules in vascular homeostasis and angiogenesis. Cell Mol Life Sci 2003; 60: 1135-57.
  • 4 Takagi J, Springer TA. Integrin activation and structural rearrangement. Immunol Rev 2002; 186: 141-63.
  • 5 Liddington RC, Ginsberg MH. Integrin activation takes shape. J Cell Biol 2002; 158: 833-9.
  • 6 Tadokoro S, Shattil SJ, Eto K. et al. Talin binding to integrin beta tails: a final common step in integrin activation. Science 2003; 302: 103-6.
  • 7 Calderwood DA, Yan B, de Pereda JM. et al. The phosphotyrosine binding-like domain of talin activates integrins. J Biol Chem 2002; 277: 21749-58.
  • 8 Kim M, Carman CV, Springer TA. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 2003; 301: 1720-5.
  • 9 Liu S, Calderwood DA, Ginsberg MH. Integrin cytoplasmic domain-binding proteins. J Cell Sci 2000; 113: 3563-71.
  • 10 Campbell ID, Ginsberg MH. The talin-tail interaction places integrin activation on FERM ground. Trends Biochem Sci 2004; 29: 429-35.
  • 11 Chang DD, Hoang BQ, Liu J. et al. Molecular basis for interaction between Icap1 alpha PTB domain and beta 1 integrin. J Biol Chem 2002; 277: 8140-5.
  • 12 Eigenthaler M, Hofferer L, Shattil SJ. et al. A conserved sequence motif in the integrin beta3 cytoplasmic domain is required for its specific interaction with beta3-endonexin. J Biol Chem 1997; 272: 7693-8.
  • 13 Reszka AA, Hayashi Y, Horwitz AF. Identification of amino acid sequences in the integrin beta 1 cytoplasmic domain implicated in cytoskeletal association. J Cell Biol 1992; 117: 1321-30.
  • 14 Kaapa A, Peter K, Ylanne J. Effects of mutations in the cytoplasmic domain of integrin beta(1) to talin binding and cell spreading. Exp Cell Res 1999; 250: 524-34.
  • 15 Vignoud L, Albiges-Rizo C, Frachet P. et al. NPXY motifs control the recruitment of the alpha5beta1 integrin in focal adhesions independently of the association of talin with the beta1 chain. J Cell Sci 1997; 110 (Pt 12) 1421-30.
  • 16 Tahiliani PD, Singh L, Auer KL. et al. The role of conserved amino acid motifs within the integrin beta3 cytoplasmic domain in triggering focal adhesion kinase phosphorylation. J Biol Chem 1997; 272: 7892-8.
  • 17 Filardo EJ, Brooks PC, Deming SL. et al. Requirement of the NPXY motif in the integrin beta 3 subunit cytoplasmic tail for melanoma cell migration in vitro and in vivo. J Cell Biol 1995; 130: 441-50.
  • 18 Gustavsson A, Armulik A, Brakebusch C. et al. Role of the beta1-integrin cytoplasmic tail in mediating invasin- promoted internalization of Yersinia. J Cell Sci 2002; 115: 2669-78.
  • 19 Sakai T, Zhang Q, Fassler R. et al. Modulation of beta1A integrin functions by tyrosine residues in the beta1 cytoplasmic domain. J Cell Biol 1998; 141: 527-38.
  • 20 Law DA, DeGuzman FR, Heiser P. et al. Integrin cytoplasmic tyrosine motif is required for outside-in alphaIIbbeta3 signalling and platelet function. Nature 1999; 401: 808-11.
  • 21 Calderwood DA, Fujioka Y, de Pereda JM. et al. Integrin beta cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling. Proc Natl Acad Sci U S A 2003; 100: 2272-7.
  • 22 Sastry SK, Burridge K. Focal adhesions: a nexus for intracellular signaling and cytoskeletal dynamics. Exp Cell Res 2000; 261: 25-36.
  • 23 Wehrle-Haller B, Imhof B. The inner lives of focal adhesions. Trends Cell Biol 2002; 12: 382.
  • 24 Cukierman E, Pankov R, Yamada KM. Cell interactions with three-dimensional matrices. Curr Opin Cell Biol 2002; 14: 633-9.
  • 25 Dormond O, Ponsonnet L, Hasmim M. et al. Manganese- induced integrin affinity maturation promotes recruitment of alpha V beta 3 integrin to focal adhesions in endothelial cells: evidence for a role of phosphatidylinositol 3-kinase and Src. Thromb Haemost 2004; 92: 151-61.
  • 26 Danen EH, Sonneveld P, Brakebusch C. et al. The fibronectin- binding integrins alpha5beta1 and alphavbeta3 differentially modulate RhoA-GTP loading, organ ization of cell matrix adhesions, and fibronectin fibrillogenesis. J Cell Biol 2002; 159: 1071-86.
  • 27 Cone RI, Weinacker A, Chen A. et al. Effects of beta subunit cytoplasmic domain deletions on the recruitment of the integrin alpha v beta 6 to focal contacts. Cell Adhes Commun 1994; 2: 101-13.
  • 28 Eliceiri BP, Puente XS, Hood JD. et al. Src-mediated coupling of focal adhesion kinase to integrin alpha(v)beta5 in vascular endothelial growth factor signaling. J Cell Biol 2002; 157: 149-60.
  • 29 Even-Ram SC, Maoz M, Pokroy E. et al. Tumor cell invasion is promoted by activation of protease activated receptor-1 in cooperation with the alpha vbeta 5 integrin. J Biol Chem 2001; 276: 10952-62.
  • 30 Lewis JM, Cheresh DA, Schwartz MA. Protein kinase C regulates alpha v beta 5-dependent cytoskeletal associations and focal adhesion kinase phosphorylation. J Cell Biol 1996; 134: 1323-32.
  • 31 Schaapveld RQ, Borradori L, Geerts D. et al. Hemidesmosome formation is initiated by the beta4 integrin subunit, requires complex formation of beta4 and HD1/plectin, and involves a direct interaction between beta4 and the bullous pemphigoid antigen 180. J Cell Biol 1998; 142: 271-84.
  • 32 Nievers MG, Schaapveld RQ, Oomen LC. et al. Ligand- independent role of the beta 4 integrin subunit in the formation of hemidesmosomes. J Cell Sci 1998; 111: 1659-72.
  • 33 Geuijen CA, Sonnenberg A. Dynamics of the alpha6beta4 integrin in keratinocytes. Mol Biol Cell 2002; 13: 3845-58.
  • 34 Mariotti A, Kedeshian PA, Dans M. et al. EGF-R signaling through Fyn kinase disrupts the function of integrin alpha6beta4 at hemidesmosomes: role in epithelial cell migration and carcinoma invasion. J Cell Biol 2001; 155: 447-58.
  • 35 Nishimura SL, Sheppard D, Pytela R. Integrin alpha v beta 8. Interaction with vitronectin and functional divergence of the beta 8 cytoplasmic domain. J Biol Chem 1994; 269: 28708-15.
  • 36 Pavalko FM, Otey CA. Role of adhesion molecule cytoplasmic domains in mediating interactions with the cytoskeleton. Proc Soc Exp Biol Med 1994; 205: 282-93.
  • 37 Ylanne J, Chen Y, O'Toole TE. et al. Distinct functions of integrin alpha and beta subunit cytoplasmic domains in cell spreading and formation of focal adhesions. J Cell Biol 1993; 122: 223-33.
  • 38 La Flamme SE, Thomas LA, Yamada SS. et al. Single subunit chimeric integrins as mimics and inhibitors of endogenous integrin functions in receptor localization, cell spreading and migration, and matrix assembly. J Cell Biol 1994; 126: 1287-98.
  • 39 Geiger B, Salomon D, Takeichi M. et al. A chimeric N-cadherin/beta 1-integrin receptor which localizes to both cell-cell and cell-matrix adhesions. J Cell Sci 1992; 103: 943-51.
  • 40 Zamir E, Katz M, Posen Y. et al. Dynamics and segregation of cell-matrix adhesions in cultured fibroblasts. Nat Cell Biol 2000; 2: 191-6.
  • 41 Pankov R, Cukierman E, Katz BZ. et al. Integrin dynamics and matrix assembly: tensin-dependent translocation of alpha(5)beta(1) integrins promotes early fibronectin fibrillogenesis. J Cell Biol 2000; 148: 1075-90.
  • 42 Ruegg C, Yilmaz A, Bieler G. et al. Evidence for the involvement of endothelial cell integrin alpha-v-beta-3 in the disruption of the tumor vasculature induced by tnf and ifn-gamma. Nat Med 1998; 4: 408-14.
  • 43 Boukamp P, Petrussevska RT, Breitkreutz D. et al. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 1988; 106: 761-71.
  • 44 Schaller MD, Otey CA, Hildebrand JD. et al. Focal adhesion kinase and paxillin bind to peptides mimicking beta integrin cytoplasmic domains. J Cell Biol 1995; 130: 1181-7.
  • 45 Zamir E, Katz BZ, Aota S. et al. Molecular diversity of cell-matrix adhesions. Jo Cell Sci 1999; 112: 1655-69.
  • 46 Parham P, Lawlor DA, Lomen CE. et al. Diversity and diversification of HLA-A,B,C alleles. J Immunol 1989; 142: 3937-50.
  • 47 Cukierman E, Pankov R, Stevens DR. et al. Taking cell-matrix adhesions to the third dimension. Science 2001; 294: 1708-12.
  • 48 Marcantonio EE, Guan JL, Trevithick JE. et al. Mapping of the functional determinants of the integrin beta 1 cytoplasmic domain by site-directed mutagenesis. Cell Regul 1990; 1: 597-604.
  • 49 Hughes PE, O'Toole TE, Ylanne J. et al. The conserved membrane-proximal region of an integrin cytoplasmic domain specifies ligand binding affinity. J Biol Chem 1995; 270: 12411-7.
  • 50 Stroeken PJ, van Rijthoven EA, Boer E. et al. Cytoplasmic domain mutants of beta1 integrin, expressed in beta 1-knockout lymphoma cells, have distinct effects on adhesion, invasion and metastasis. Oncogene 2000; 19: 1232-8.
  • 51 Schaffner-Reckinger E, Brons NH, Kieffer N. Evidence from site-directed mutagenesis that the cytoplasmic domain of the beta3 subunit influences the conformational state of the alphaVbeta3 integrin ectodomain. Thromb Haemost 2001; 85: 716-23.
  • 52 Pasqualini R, Hemler ME. Contrasting roles for integrin beta 1 and beta 5 cytoplasmic domains in subcellular localization, cell proliferation, and cell migration. J Cell Biol 1994; 125: 447-60.
  • 53 David FS, Zage PE, Marcantonio EE. Integrins interact with focal adhesions through multiple distinct pathways. J Cell Physiol 1999; 181: 74-82.
  • 54 Oguey D, George PW, Ruegg C. Disruption of integrin- dependent adhesion and survival of endothelial cells by recombinant adenovirus expressing isolated beta integrin cytoplasmic domains. Gene Ther 2000; 7: 1292-303.
  • 55 Lukashev ME, Sheppard D, Pytela R. Disruption of integrin function and induction of tyrosine phosphorylation by the autonomously expressed beta 1 integrin cytoplasmic domain. J Biol Chem 1994; 269: 18311-4.
  • 56 Berrier AL, Martinez R, Bokoch GM. et al. The integrin beta tail is required and sufficient to regulate adhesion signaling to Rac1. J Cell Sci 2002; 115: 4285-91.
  • 57 Smilenov L, Briesewitz R, Marcantonio EE. Integrin beta 1 cytoplasmic domain dominant negative effects revealed by lysophosphatidic acid treatment. Mol Biol Cell 1994; 5: 1215-23.
  • 58 Spinardi L, Einheber S, Cullen T. et al. A recombinant tail-less integrin beta 4 subunit disrupts hemidesmosomes, but does not suppress alpha 6 beta 4-mediated cell adhesion to laminins. J Cell Biol 1995; 129: 473-87.
  • 59 Rey-Ladino JA, Pyszniak AM, Takei F. Dominantnegative effect of the lymphocyte function-associated antigen-1 beta (CD18) cytoplasmic domain on leukocyte adhesion to ICAM-1 and fibronectin. J Immunol 1998; 160: 3494-501.
  • 60 Mastrangelo AM, Homan SM, Humphries MJ. et al. Amino acid motifs required for isolated beta cytoplasmic domains to regulate ‘in trans’ beta1 integrin conformation and function in cell attachment. J Cell Sci 1999; 112: 217-29.
  • 61 Stupack DG, Puente XS, Boutsaboualoy S. et al. Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J Cell Biol 2001; 155: 459-70.
  • 62 Relvas JB, Setzu A, Baron W. et al. Expression of dominant-negative and chimeric subunits reveals an essential role for beta1 integrin during myelination. Curr Biol 2001; 11: 1039-43.
  • 63 Schmeissner PJ, Xie H, Smilenov LB. et al. Integrin functions play a key role in the differentiation of thymocytes in vivo . J Immunol 2001; 167: 3715-24.
  • 64 Faraldo MM, Deugnier MA, Thiery JP. et al. Development of mammary gland requires normal beta 1-integrin function. Adv Exp Med Biol 2000; 480: 169-74.
  • 65 Zimmerman D, Jin F, Leboy P. et al. Impaired bone formation in transgenic mice resulting from altered integrin function in osteoblasts. Dev Biol 2000; 220: 2-15.
  • 66 Borges E, Jan Y, Ruoslahti E. Platelet-derived growth factor receptor beta and vascular endothelial growth factor receptor 2 bind to the beta 3 integrin through its extracellular domain. J Biol Chem 2000; 275: 39867-73.
  • 67 Loster K, Vossmeyer D, Hofmann W. et al. alpha1 Integrin cytoplasmic domain is involved in focal adhesion formation via association with intracellular proteins. Biochem J 2001; 356: 233-40.
  • 68 Briesewitz R, Kern A, Marcantonio EE. Ligand-dependent and -independent integrin focal contact localization: the role of the alpha chain cytoplasmic domain. Mol Biol Cell 1993; 4: 593-604.
  • 69 Blystone SD, Lindberg FP, Williams MP. et al. Inducible tyrosine phosphorylation of the beta3 integrin requires the alphaV integrin cytoplasmic tail. J Biol Chem 1996; 271: 31458-62.
  • 70 Li R, Babu CR, Valentine K. et al. Characterization of the monomeric form of the transmembrane and cytoplasmic domains of the integrin beta 3 subunit by NMR spectroscopy. Biochemistry 2002; 41: 15618-24.
  • 71 Li R, Babu CR, Lear JD. et al. Oligomerization of the integrin alphaIIbbeta3: roles of the transmembrane and cytoplasmic domains. Proc Natl Acad Sci U S A 2001; 98: 12462-7.
  • 72 Li R, Bennett JS, Degrado WF. Structural basis for integrin alphaIIbbeta3 clustering. Biochem Soc Trans 2004; 32: 412-5.
  • 73 Li R, Mitra N, Gratkowski H. et al. Activation of integrin alphaIIbbeta3 by modulation of transmembrane helix associations. Science 2003; 300: 795-8.
  • 74 Xiong JP, Stehle T, Diefenbach B. et al. Crystal structure of the extracellular segment of integrin alpha Vbeta3. Science 2001; 294: 339-45.
  • 75 Hantgan RR, Gibbs W, Stahle MC. et al. Integrin clustering mechanisms explored with a soluble alphaIIbbeta3 ectodomain construct. Biochim Biophys Acta 2004; 1700: 19-25.
  • 76 La Flamme SE, Homan SM, Bodeau AL. et al. Integrin cytoplasmic domains as connectors to the cell’s signal transduction apparatus. Matrix Biol 1997; 16: 153-63.
  • 77 O'Toole TE, Ylanne J, Culley BM. Regulation of integrin affinity states through an NPXY motif in the beta subunit cytoplasmic domain. J Biol Chem 1995; 270: 8553-8.
  • 78 Boettiger D, Huber F, Lynch L. et al. Activation of alpha(v)beta3-vitronectin binding is a multistage process in which increases in bond strength are dependent on Y747 and Y759 in the cytoplasmic domain of beta3. Mol Biol Cell 2001; 12: 1227-37.