Thromb Haemost 2005; 94(02): 312-318
DOI: 10.1160/TH05-04-0265
Theme Issue Article
Schattauer GmbH

Consequences of enterohaemorrhagic Escherichia coli infection for the vascular endothelium

Martina Bielaszewska
1   Institute for Hygiene, and the National Consulting Laboratory on Haemolytic Uraemic Syndrome, University Hospital Münster, Münster, Germany
,
Helge Karch
1   Institute for Hygiene, and the National Consulting Laboratory on Haemolytic Uraemic Syndrome, University Hospital Münster, Münster, Germany
› Author Affiliations
Financial support: Grant support: The research on the identification of non-Shiga toxin virulence factors of enterohaemorrhagic Escherichia coli in the laboratory of Prof. Dr. Helge Karch has been supported by the Deutsche Forschungsgemeinschaft (DFG) program “Infections of the endothelium” SPP 1130, grants KA 717/4–1 and 717/4–2.
Further Information

Publication History

Received: 18 April 2005

Accepted after major revision: 30 March 2005

Publication Date:
05 December 2017 (online)

Summary

Microvascular endothelial damage underlies the pathological changes in haemorrhagic colitis and the haemolytic uraemic syndrome (HUS) caused by enterohaemorrhagic Escherichia coli (EHEC). Shiga toxins (Stxs) are presently the best characterised EHEC virulence factors that can cause the microvascular endothelium injury. Stxs are released by EHEC in the intestine, absorbed across the gut epithelium into the circulation, and transported to small vessel endothelial cells. Then, they presumably injure the host cell by inhibiting protein synthesis, stimulating prothrombotic messages,or inducing apoptosis. The net result is a multi-organ thrombotic process. Moreover, Stxs stimulate a variety of non-endothelial cells to produce and secrete inflammatory mediators (cytokines, chemokines, adhesion molecules) which could potentiate the effects of Stxs on endothelial cells. The association of HUS with Stx-negative E. coli strains stimulated intensive research on putative non-Stx virulence factors, which might also contribute to the pathogenesis of HUS and haemorrhagic colitis. Based on current data, cytolethal distending toxin, EHEC haemolysin, and subtilase cytotoxin might be such candidates.

 
  • References

  • 1 Karmali MA. Infection by verocytotoxin-producing Escherichia coli . Clin Microbiol Rev 1989; 2: 1538.
  • 2 Karmali MA. Infection by Shiga toxin-producing Escherichia coli: an overview. Mol Biotechnol 2004; 26: 117-22.
  • 3 Tarr PI, Gordon CA, Chandler WL. Shiga-toxinproducing Escherichia coli and haemolytic uraemic syndrome. Lancet 2005; 365: 1073-86.
  • 4 Banatvala N, Griffin PM. et al. The United States national prospective hemolytic uremic syndrome study: microbiologic, serologic, clinical, and epidemiologic findings. J Infect Dis 2001; 183: 1063-70.
  • 5 Karch H, Bielaszewska M. et al. Epidemiology and diagnosis of Shiga toxin-producing Escherichia coli infections. Diagn Microbiol Infect Dis 1999; 34: 229-43.
  • 6 Karmali MA, Steele BT, Petric M. et al. Sporadic cases of haemolytic-uraemic syndrome associated with faecal cytotoxin and cytotoxin-producing Escherichia coli in stools. Lancet 1983; 1: 61920.
  • 7 Karmali MA, Petric M, Lim C. et al. The association between idiopathic hemolytic uremic syndrome and infection by verotoxin-producing Escherichia coli . J Infect Dis 1985; 151: 775-82.
  • 8 Karch H, Bielaszewska M. Sorbitol-fermenting Shiga toxin-producing Escherichia coli O157: Hstrains: epidemiology, phenotypic and molecular characteristics, and microbiological diagnosis. J Clin Microbiol 2001; 39: 2043-9.
  • 9 Friedrich AW. et al. Escherichia coli harboring Shiga toxin 2 gene variants: frequency and association with clinical symptoms. J Infect Dis 2002; 185: 74-84.
  • 10 Gerber A, Karch H. et al. Clinical course and the role of Shiga toxin-producing Escherichia coli infection in the hemolytic-uremic syndrome in pediatric patients, 1997–2000, in Germany and Austria: a prospective study. J Infect Dis 2002; 186: 493-500.
  • 11 Tozzi AE, Caprioli A, Minelli F. et al. Shiga toxinproducing Escherichia coli infections associated with hemolytic uremic syndrome, Italy,1988 -2000. Emerg Infect Dis 2003; 9: 106-8.
  • 12 Elliott EJ, Robins-Browne RM, O’Loughlin EV. et al. Nationwide study of haemolytic uraemic syndrome: clinical, microbiological, and epidemiological features. Arch Dis Child 2001; 85: 125-31.
  • 13 Bell BP. et al. A multistate outbreak of Escherichia coli O157: H7-associated bloody diarrhea and hemolytic uremic syndrome from hamburgers. The Washington experience. JAMA 1994; 272: 1349-53.
  • 14 Wong CS, Jelacic S, Habeeb RL. et al. The risk of the hemolytic uremic syndrome after antibiotic treatment of Escherichia coli O157: H7 infections. N Engl J Med 2000; 26: 1930-6.
  • 15 Dundas S. et al. The central Scotland Escherichia coli O157: H7 outbreak: risk factors for the hemolytic uremic syndrome and death among hospitalized patients. Clin Infect Dis 2001; 33: 923-31.
  • 16 Andreoli SP. et al. Hemolytic uremic syndrome: epidemiology, pathophysiology, and therapy. Pediatr Nephrol 2002; 17: 293-8.
  • 17 Laschke MW. et al. Intravital fluorescence microscopy: a novel tool for the study of the interaction of Staphylococcus aureus with the microvascular endothelium in vivo. J Infect Dis 2005; 191: 435-43.
  • 18 Dehio C. Bartonella interactions with endothelial cells and erythrocytes. Trends Microbiol 2001; 9: 279-85.
  • 19 Dehio C. Recent progress in understanding Bartonella- induced vascular proliferation. Curr Opin Microbiol 2003; 6: 61-5.
  • 20 Raife T, Friedman KD, Fenwick B. Lepirudin prevents lethal effects of Shiga toxin in a canine model. Thromb Haemost 2004; 92: 387-93.
  • 21 Richardson SE, Rotman TA, Jay V. et al. Experimental verocytotoxemia in rabbits. Infect Immun 1992; 60: 4154-67.
  • 22 Bielaszewska M, Clarke I, Karmali MA. et al. Localization of intravenously administered verocytotoxins (Shiga-like toxins) 1 and 2 in rabbits immunized with homologous and heterologous toxoids and toxin subunits. Infect Immun 1997; 65: 2509-16.
  • 23 Proulx F, Seidman EG, Karpman D. Pathogenesis of Shiga toxin-associated hemolytic uremic syndrome. Pediatr Res 2001; 50: 163-71.
  • 24 Schmidt H, Scheef J, Huppertz HI. et al. Escherichia coli O157: H7 and O157: H- strains that do not produce Shiga toxin: phenotypic and genetic characterization of isolates associated with diarrhea and hemolytic-uremic syndrome. J Clin Microbiol 1999; 37: 3491-6.
  • 25 Taylor FB, Jr Tesh VL, DeBault L. et al. Characterization of the baboon responses to Shiga-like toxin: descriptive study of a new primate model of toxic responses to Stx-1. Am J Pathol 1999; 154: 1285-99.
  • 26 Bitzan M, te Loo DM. Interaction of Shiga toxin with endothelial cells. Methods Mol Med 2003; 73: 243-62.
  • 27 Richardson SE, Karmali MA, Becker LE. et al. The histopathology of the hemolytic uremic syndrome associated with verocytotoxin-producing Escherichia coli infections. Hum Pathol 1988; 19: 1102-8.
  • 28 Inward CD, Howie AJ. et al. Renal histopathology in fatal cases of diarrhoea-associated haemolytic uraemic syndrome. Pediatr Nephrol 1997; 11: 556-9.
  • 29 Riella MC, George CR, Hickman RO. et al. Renal microangiopathy of the hemolytic-uremic syndrome in childhood. Nephron 1976; 17: 188-203.
  • 30 Habib R. Pathology of the hemolytic-uremic syndrome. Hemolytic uremic syndrome and thrombotic thrombocytopenic purpura. Kaplan BS, Trompeter RS, Moake JL. New York: Marcel Dekker; 1992: 315-53.
  • 31 van Setten PA, Monnens LA. et al. Effects of verocytotoxin- 1 on nonadherent human monocytes: binding characteristics, protein synthesis, and induction of cytokine release. Blood 1996; 88: 174-83.
  • 32 Harrison LM, van Haaften WCE, Tesh VL. Regulation of proinflammatory cytokine expression by Shiga toxin 1 and/or lipopolysaccharides in the human monocytic cell line THP-1. Infect Immun 2004; 72: 2618-27.
  • 33 Harrison LM, Cherla RP. et al. Comparative evaluation of apoptosis induced by Shiga toxin 1 and/or lipopolysaccharides in human monocytic and macrophagelike cells. Microb Pathog 2005; 38: 63-76.
  • 34 Te Loo DM, Monnens LA, van Der Velden TJ. et al. Binding and transfer of verocytotoxin by polymorphonuclear leukocytes in hemolytic uremic syndrome. Blood 2000; 95: 3396-402.
  • 35 Te Loo DM, van Hinsbergh VW. et al. Detection of verocytotoxin bound to circulating polymorphonuclear leukocytes of patients with hemolytic uremic syndrome. J Am Soc Nephrol 2001; 12: 800-6.
  • 36 Liu J, Akahoshi T, Sasahana T. et al. Inhibition of neutrophil apoptosis by verotoxin 2 derived from Escherichia coli O157: H7. Infect Immun 1999; 67: 6203-5.
  • 37 Karpman D, Papadopoulou D, Nilsson K. et al. Platelet activation by Shiga toxin and circulatory factors as a pathogenetic mechanism in the hemolytic uremic syndrome. Blood 2001; 97: 3100-8.
  • 38 Hughes AK, Stricklett PK, Kohan DE. Shiga toxin 1 regulation of cytokine production by human proximal tubule cells. Kidney Int 1998; 54: 1093-106.
  • 39 Upadhyaya K, Barwick K, Fishaut M. et al. The importance of nonrenal involvement in hemolytic-uremic syndrome. Pediatrics 1980; 65: 115-20.
  • 40 Tsai HM, Chandler WL, Sarode R. et al. Von Willebrand factor and von Willebrand factor-cleaving metalloprotease activity in Escherichia coli O157: H7-associated hemolytic uremic syndrome. Pediatr Res 2001; 49: 653-9.
  • 41 Griffin PM, Olmstead LC, Petras RE. Escherichia coli O157: H7-associated colitis. Gastroenterology 1990; 99: 142-9.
  • 42 Chandler WL, Jelacic S, Boster DR. et al. Prothrombotic coagulation abnormalities associated with Escherichia coli O157: H7 infections. N Engl J Med 2002; 346: 23-32.
  • 43 Tarr PI. Basic fibroblast growth factor and Shiga toxin-O157: H7-associated hemolytic uremic syndrome. J Am Soc Nephrol 2002; 13: 817-20.
  • 44 Nevard CH, Jurd KM, Lane DA. et al. Activation of coagulation and fibrinolysis in childhood diarrhoea-associated haemolytic uraemic syndrome. Thromb Haemost 1997; 8: 1450-5.
  • 45 van de Kar NC, van Hinsbergh VW, Brommer EJ. et al. The fibrinolytic system in the hemolytic uremic syndrome: in vivo and in vitro studies. Pediatr Res 1994; 36: 257-64.
  • 46 van Geet C, Proesmans W. et al. Activation of both coagulation and fibrinolysis in childhood hemolytic uremic syndrome. Kidney Int 1998; 54: 1324-30.
  • 47 Bergstein JM, Riley BS, Bang NU. Role of plasminogen- activator inhibitor type 1 in the pathogenesis and outcome of the hemolytic uremic syndrome. N Engl J Med 1992; 327: 755-9.
  • 48 Proulx F, Turgeon JP, Litalien C. et al. Inflammatory mediators in Escherichia coli O157: H7 hemorrhagic colitis and hemolytic-uremic syndrome. Pediatr Infect Dis J 1998; 17: 899-904.
  • 49 Proulx F, Litalien C, Turgeon JP. et al. Circulating levels of transforming growth factor-beta1 and lymp hokines among children with hemolytic uremic syndrome. Am J Kidney Dis 2000; 35: 29-34.
  • 50 Smith JM, Jones F, Ciol MA. et al. Platelet-activating factor and Escherichia coli O157: H7 infections. Pediatr Nephrol 2002; 17: 1047-52.
  • 51 Nevard CH, Blann AD. et al. Markers of endothelial cell activation and injury in childhood haemolytic uraemic syndrome. Pediatr Nephrol 1999; 13: 487-92.
  • 52 Forsyth KD, Simpson AC, Fitzpatrick MM. et al. Neutrophil-mediated endothelial injury in haemolytic uraemic syndrome. Lancet 1989; 2: 411-4.
  • 53 Hughes DA, Smith GC. et al. The neutrophil oxidative burst in diarrhea-associated haemolytic uraemic syndrome. Pediatr Nephrol 1996; 10: 445-7.
  • 54 Fitzpatrick MM, Shah V, Trompeter RS. et al. Interleukin- 8 and polymorphoneutrophil leucocyte activation in hemolytic uremic syndrome of childhood. Kidney Int 1992; 42: 951-6.
  • 55 Bell BP, Griffin PM, Lozano P. et al. Predictors of hemolytic uremic syndrome in children during a large outbreak of Escherichia coli O157: H7 infections. Pediatrics 1997; 100: E12.
  • 56 Buteau C, Proulx F, Chaibou M. et al. Leukocytosis in children with Escherichia coli O157: H7 enteritis developing the hemolytic uremic syndrome. Pediatr Infect Dis J 2000; 19: 642-7.
  • 57 Pavia AT, Nichols CR, Green DP. et al. Hemolyticuremic syndrome during an outbreak of Escherichia coli O157: H7 infections in institutions for mentally retarded persons: clinical and epidemiologic observations. J Pediatr 1990; 116: 544-51.
  • 58 Walters MD, Matthei IE, Kay R. et al. The polymorphonuclear leukocyte count in childhood haemolytic uraemic syndrome. Pediatr Nephrol 1989; 3: 130-4.
  • 59 Coad NA, Marshall T, Rowe B. et al. Changes in the postenteropathic form of the hemolytic uremic syndrome in children. Clin Nephrol 1991; 35: 10-16.
  • 60 Vierzig A, Roth B, Querfeld U. et al. A 12-year-old boy with fatal hemolytic uremic syndrome, excessive neutrophilia and elevated endogenous granulocyte-colony- stimulating-factor serum concentrations. Clin Nephrol 1998; 50: 56-9.
  • 61 van Setten PA, Hinsbergh MV, Van Den, Heuvel LPWJ. et al. Monocyte chemoattractant protein-1 and interleukin-8 in urine and serum of patients with hemolytic uremic syndrome. Pediatr Res 1998; 43: 759-67.
  • 62 van de Kar NCAJ, Sauerwein RW, Demacker PNM. et al. Plasma cytokine levels in hemolytic uremic syndrome. Nephron 1995; 71: 309-13.
  • 63 Karpman D, Andreasson A, Thysell H. et al. Cytokines in childhood hemolytic uremic syndrome and thrombotic thrombocytopenic purpura. Pediatr Nephrol 1995; 9: 694-9.
  • 64 Yamamoto T, Isokawa S, Miyata H. et al. Evaluation of thrombomodulin and tumor necrosis factor-alpha levels in patients with hemolytic uremic syndrome caused by enterohemorrhagic Escherichia coli O157: H7 infection. Nippon Jinzo Gakkai Shi 1999; 41: 60-4.
  • 65 Inward CD, Varagunam M, Adu D. et al. Cytokines in haemolytic uraemic syndrome associated with verocytotoxin- producing Escherichia coli infection. Arch Dis Child 1997; 77: 145-7.
  • 66 O’Brien AD, Tesh VL. et al. Shiga toxin: biochemistry, genetics, mode of action, and role in pathogenesis. Curr Top Microbiol Immunol 1992; 180: 65-94.
  • 67 Sandvig K. Shiga toxins. Toxicon 2001; 39: 1629-35.
  • 68 Jackson MP, Neil RJ, O’Brien AD. et al. Nucleotide sequence analysis and comparison of the structural genes for Shiga-like toxin I and Shiga-like toxin II encoded by bacteriophages from Escherichia coli 933. FEMS Microbiol Lett 1987; 44: 109-14.
  • 69 Zhang W, Bielaszewska M, Kuczius T. et al. Identification, characterization and distribution of a Shiga toxin-mediated cell cycle arrest. 1 gene variant (stx1c ) in Escherichia coli isolated from humans. Mol Microbiol 2000; 37: 952-63.
  • 70 Friedrich AW, Borell J, Bielaszewska M. et al. Shiga toxin 1c-producing Escherichia coli strains: Phenotypic and genetic characterization and association with human disease. J Clin Microbiol 2003; 41: 2448-53.
  • 71 Kuczius T, Bielaszewska M, Friedrich AW. et al. A rapid method for the discrimination of genes encoding classical Shiga toxin (Stx) 1 and its variants, Stx1c and Stx1d, in Escherichia coli. Mol Nutr Food Res 2004; 48: 515-21.
  • 72 Schmitt CK, McKee ML, O’Brien AD. Two copies of Shiga-like toxin II-related genes common in enterohemorrhagic Escherichia coli strains are responsible for the antigenic heterogeneity of the O157: H- strain E32511. Infect Immun 1991; 59: 1065-73.
  • 73 Pierard D, Muyldermas G, Moriau L. et al. Identification of new Verocytotoxin type 2 variant B-subunit genes in human and animal Escherichia coli isolates. J Clin Microbiol 1998; 36: 3317-22.
  • 74 Melton-Celsa AR, Darnell SC, O’Brien AD. Activation of Shiga-like toxins by mouse and human intestinal mucus correlates with virulence of enterohemorrhagic Escherichia coli O91: H21 isolates in orally infected, streptomycin-treated mice. Infect Immun 1996; 64: 1569-76.
  • 75 Weinstein DL, Jackson MP, Samuel JE. et al. Cloning and sequencing of a Shiga-like toxin type II variant from an Escherichia coli strain responsible for edema disease of swine. J Bacteriol 1988; 170: 4223-30.
  • 76 Ostroff SM, Tarr PI, Neill MA. et al. Toxin genotypes and plasmid profiles as determinants of systemic sequelae in Escherichia coli O157: H7 infections. J Infect Dis 1989; 160: 994-8.
  • 77 Boerlin P, McEwen SA, Boerlin-Petzold F. et al. Association between virulence factors of Shiga toxin-producing Escherichia coli and disease in humans. J Clin Microbiol 1999; 37: 497-503.
  • 78 Zhang W, Bielaszewska M, Friedrich AW. et al. Transcriptional analysis of genes encoding Shiga toxin 2 and its variants in Escherichia coli. Appl Environ Microbiol 2005; 71: 558-61.
  • 79 Hurley BP, Thorpe CM, Acheson DW. Shiga toxin translocation across intestinal epithelial cells is enhanced by neutrophil transmigration. Infect Immun 2001; 69: 6148-55.
  • 80 Tazzari PL, Ricci F, Carnicelli D. et al. Flow cytometry detection of Shiga toxins in the blood from children with hemolytic uremic syndrome. Cytometry B Clin Cytom 2004; 61: 40-4.
  • 81 Lingwood CA. Shiga toxin receptor glycolipid binding. Pathology and utility. Methods Mol Med 2003; 73: 165-86.
  • 82 Boyd B, Lingwood C. Verotoxin receptor glycolipid in human renal tissue. Nephron 1989; 51: 207-10.
  • 83 Jacewicz MS, Acheson DW, Binion DG. et al. Responses of human intestinal microvascular endothelial cells to Shiga toxins 1 and 2 and pathogenesis of hemorrhagic colitis. Infect Immun 1999; 67: 1439-44.
  • 84 Ren J, Utsunomiya I, Tagushi K. et al. Localization of verotoxin receptors in nervous system. Brain Res 1999; 825: 183-8.
  • 85 Sandvig K, Olsnes S, Brown JE. et al. Endocytosis from coated pits of Shiga toxin: a glycolipid-binding protein from Shigella dysenteriae 1. J Cell Biol 1989; 108: 1331-43.
  • 86 Endo Y, Tsurugi K, Yutsudo T. et al. Site of action of a Vero toxin (VT2) from Escherichia coli O157: H7 and of Shiga toxin on eukaryotic ribosomes. RNA N-glycosidase activity of the toxins. Eur J Biochem. 1988: 17145-50.
  • 87 Saxena SK, O’Brien AD, Ackerman EJ. Shiga toxin, Shiga-like toxin II variant, and ricin are all single-site RNA N-glycosidases of 28 S RNA when microinjected into Xenopus oocytes. J Biol Chem 1989; 264: 596-601.
  • 88 Yoshida T, Fukada M, Koide N. et al. Primary cultures of human endothelial cells are susceptible to low doses of Shiga toxins and undergo apoptosis. J Infect Dis 1999; 180: 2048-52.
  • 89 Ergonul Z, Hughes AK, Kohan DE. Induction of apoptosis of human brain microvascular endothelial cells by Shiga toxin 1. J Infect Dis 2003; 187: 154-8.
  • 90 Bombeli T, Schwartz BR, Harlan JM. Endothelial cells undergoing apoptosis become proadhesive for nonactivated platelets. Blood 1999; 93: 3831-8.
  • 91 Cherla RP, Lee SY, Tesh VL. Shiga toxins and apoptosis. FEMS Microbiol Lett 2003; 228: 159-66.
  • 92 Pijpers AH, van Setten PA, van den Heuvel LP. et al. Verocytotoxin-induced apoptosis of human microvascular endothelial cells. J Am Soc Nephrol 2001; 12: 767-78.
  • 93 Brigotti M, Alfieri R, Sestili P. et al. Damage to nuclear DNA induced by Shiga toxin 1 and ricin in human endothelial cells. FASEB J 2002; 16: 365-72.
  • 94 Obrig TG, Louise CB, Lingwood CA. et al. Endothelial heterogeneity in Shiga toxin receptors and responses. J Biol Chem 1993; 268: 15484-8.
  • 95 O’Loughlin EV, Robins-Browne RM. Effect of Shiga toxin and Shiga-like toxins on eukaryotic cells. Microbes Infect 2001; 3: 493-507.
  • 96 Obrig TG, Del Vecchio PJ, Brown JE. et al. Direct cytotoxic action of Shiga toxin on human vascular endothelial cells. Infect Immun 1988; 56: 2373-8.
  • 97 van Setten PA, van Hinsberg VW, van-der Velden TJ. et al. Effects of TNF alpha on verocytotoxin cytotoxicity in purified human glomerular microvascular endothelial cells. Kidney Int 1997; 51: 1245-56.
  • 98 Louise B, Obrig TG. Specific interaction of Escherichia coli O157: H7-derived Shiga-like toxin II with human renal endothelial cells. J Infect Dis 1995; 172: 1397-401.
  • 99 Hutchinson JS, Stanimirovic D, Shapiro A. et al. Shiga toxin (verotoxin) toxicity in human cerebral endothelial cells. Escherichia coli O157: H7 and other Shiga toxin-producing Escherichia coli. Kaper JB, O´Brien AD. American Society for Microbiology; Washington DC: 1998: 323-8.
  • 100 Ramegowda B, Samuel JE, Tesh VL. Interaction of Shiga toxins with human brain microvascular endothelial cells: cytokines as sensitizing agents. J Infect Dis 1999; 180: 1205-13.
  • 101 Keusch GT, Acheson DW, Aaldering L. et al. Comparison of the effects of Shiga-like toxin 1 on cytokineand butyrate-treated human umbilical and saphenous vein endothelial cells. J Infect Dis 1996; 173: 1164-70.
  • 102 Simon M, Cleary TG, Hernandez JD. et al. Shiga toxin 1 elicits diverse biologic responses in mesangial cells. Kidney Int 1998; 54: 1117-27.
  • 103 Matussek A, Lauber J, Bergau A. et al. Molecular and functional analysis of Shiga toxin-induced response patterns in human vascular endothelial cells. Blood 2003; 102: 1323-32.
  • 104 Eisenhauer PB, Jacewicz MS, Conn KJ. et al. Escherichia coli Shiga toxin 1 and TNF-alpha induce cytokine release by human cerebral microvascular endothelial cells. Microb Pathog 2004; 36: 189-96.
  • 105 Thorpe CM, Hurley BP, Lincicome LL. et al. Shiga toxins stimulate secretion of interleukin-8 from intestinal epithelial cells. Infect Immun 1999; 67: 5985-93.
  • 106 Thorpe CM, Smith WE, Hurley BP. et al. Shiga toxins induce, superinduce, and stabilize a variety of C-X-C chemokine mRNAs in intestinal epithelial cells, resulting in increased chemokine expression. Infect Immun 2001; 69: 6140-47.
  • 107 van de Kar NC, Monnens LA, Karmali MA. et al. Tumor necrosis factor and interleukin-1 induce expression of the verocytotoxin receptor globotriaosylceramide on human endothelial cells: implications for the pathogenesis of the hemolytic uremic syndrome. Blood 1992; 80: 2755-64.
  • 108 Kaye SA, Louise CB, Boyd B. et al. Shiga toxinassociated hemolytic uremic syndrome: interleukin-1 enhancement of Shiga toxin cytotoxicity toward human vascular endothelial cells in vitro. Infect Immun 1993; 61: 3886-91.
  • 109 Louise CB, Obrig TG. Shiga toxin-associated hemolytic uremic syndrome: combined cytotoxic effects of Shiga toxin and lipopolysaccharide (endotoxin) on human vascular endothelial cells in vitro. Infect Immun 1992; 60: 1536-43.
  • 110 Obrig TG, Seaner RM, Bentz M. et al. Induction by sphingomyelinase of Shiga toxin receptor and Shiga toxin 2 sensitivity in human microvascular endothelial cells. Infect Immun. 2003; 71: 845-49.
  • 111 Morigi M, Micheletti G, Figliuzzi M. et al. Verotoxin- 1 promotes leukocyte adhesion to cultured endothelial cells under physiologic flow conditions. Blood 1995; 86: 4553-58.
  • 112 Morigi M, Galbusera M, Binda E. et al. Verotoxin- 1-induced up-regulation of adhesive molecules renders microvascular endothelial cells thrombogenic at high shear stress. Blood 2001; 98: 1828-35.
  • 113 Zoja C, Angioletti S. et al. Shiga toxin-2 triggers endothelial leukocyte adhesion and transmigration via NF-kappaB dependent up-regulation of IL-8 and MCP-1. Kidney Int 2002; 62: 846-56.
  • 114 Bitzan MM, Wang Y, Lin J. et al. Verotoxin and ricin have novel effects on preproendothelin-1 expression but fail to modify nitric oxide synthase (ecNOS) expression and NO production in vascular endothelium. J Clin Invest 1998; 101: 372-82.
  • 115 Ishii H, Takada K, Higuchi T. et al. Verotoxin-1 induces tissue factor expression in human umbilical vein endothelial cells through activation of NF-kappaB/Rel and AP-1. Thromb Haemost 2000; 84: 712-21.
  • 116 Janka A, Bielaszewska M, Dobrindt U. et al. Cytolethal distending toxin gene cluster in enterohemorrhagic Escherichia coli O157: H- and O157: H7: characterization and evolutionary considerations. Infect Immun 2003; 71: 3634-8.
  • 117 Schmidt H, Beutin L, Karch H. Molecular analysis of the plasmid-encoded hemolysin of Escherichia coli O157: H7 strain EDL 933. Infect Immun 1995; 63: 1055-61.
  • 118 Paton AW, Srimanote P, Talbot UM. et al. A new family of potent AB5 cytotoxins produced by Shiga toxigenic Escherichia coli. J Exp Med 2004; 200: 35-46.
  • 119 Bielaszewska M. et al. Characterization of cytolethal distending toxin genes and expression in Shiga toxin-producing Escherichia coli strains of non-O157 serogroups. Infect Immun 2004; 72: 1812-16.
  • 120 Thelestam M, Frisan T. Cytolethal distending toxins. Rev Physiol Biochem Pharmacol 2004; 152: 111-133.
  • 121 Cortes-Bratti X, Frisan T, Thelestam M. The cytolethal distending toxins induce DNA damage and cell cycle arrest. Toxicon 2001; 39: 1729-36.
  • 122 Lara-Tejero M, Galan JE. CdtA, CdtB, and CdtC form a tripartite complex that is required for cytolethal distending toxin activity. Infect Immun 2001; 69: 4358-65.
  • 123 Lara-Tejero M, Galan JE. A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein. Science 2000; 290: 354-57.
  • 124 Oswald E, Nougayrede JP, Taieb F. et al. Bacterial toxins that modulate host cell-cycle progression. Curr Opin Microbiol 2005; 8: 83-91.
  • 125 Elwell CA, Dreyfus LA. DNase I homologous residues in CdtB are critical for cytolethal distending toxin-mediated cell cycle arrest. Mol Microbiol 2000; 37: 952-63.
  • 126 Deng K, Hansen EJ. A CdtA-CdtC complex can block killing of HeLa cells by Haemophilus ducreyi cytolethal distending toxin. Infect Immun 2003; 71: 6633-40.
  • 127 Paton AW, Woodrow MC, Doyle RM. et al. Molecular characterization of a Shiga-toxigenic Escherichia coli O113: H21 strain lacking eae responsible for a cluster of cases of hemolytic-uremic syndrome. J Clin Microbiol 1999; 37: 3357-61.
  • 128 Bielaszewska M, Sinha B, Kuczius T. et al. Cytolethal distending toxin from Shiga toxin-producing Escherichia coli O157 causes irreversible G2/M arrest, inhibition of proliferation and death of human endothelial cells. Infect Immun 2005; 73: 552-62.
  • 129 Dobrindt U, Agerer F, Michaelis K. et al. Analysis of genome plasticity in pathogenic and commensal Escherichia coli isolates by use of DNA arrays. J Bacteriol 2003; 185: 1831-40.
  • 130 Mellmann A, Bielaszewska M, Zimmerhackl BL. et al. Enterohemorrhagic Escherichia coli in human infection: in vivo evolution of a bacterial pathogen. Clin Infect Dis. 2005 in press.
  • 131 Bielaszewska M, Zhang W, Tarr PI. et al. Molecular profiling and phenotype analysis of Escherichia coli O26: H11 and O26: NM: Secular and geographic consistency of enterohemorrhagic and enteropathogenic isolates. J Clin Microbiol. 2005 in press.
  • 132 Sonntag A, Prager R, Bielaszewska M. et al. Phenotypic and genotypic analyses of enterohemorrhagic Escherichia coli O145 strains from patients in Germany. J Clin Microbiol 2004; 42: 95462.
  • 133 Schmidt H, Maier E, Karch H. et al. Pore-forming properties of the plasmid-encoded hemolysin of enterohemorrhagic Escherichia coli O157: H7. Eur J Biochem 1996; 241: 594-601.
  • 134 Taneike I, Zhang HM, Wakisaka-Saito N. et al. Enterohemolysin operon of Shiga toxin-producing Escherichia coli: a virulence function of inflammatory cytokine production from human monocytes. FEBS Lett 2002; 524: 219-24.
  • 135 Brunder W, Schmidt H, Karch H. EspP, a novel extracellular serine protease of enterohaemorrhagic Escherichia coli O157: H7 cleaves human coagulation factor V. Mol Microbiol 1997; 24: 767-78.
  • 136 Berin MC, Darfeuille-Michaud A, Egan LJ. et al. Role of EHEC O157: H7 virulence factors in the activation of intestinal epithelial cell NF-kappaB and MAP kinase pathways and the upregulated expression of interleukin. Cell Microbiol 2002; 4: 635-48.
  • 137 Rogers TJ, Paton AW, McColl SR. et al. Enhanced CXC chemokine responses of human colonic epithelial cells to locus of enterocyte effacement-negative Shigatoxigenic Escherichia coli . Infect Immun 2003; 71: 5623-32.
  • 138 Karmali MA. Prospects for preventing serious systemic toxemic complications of Shiga toxin-producing Escherichia coli infections using Shiga toxin receptor analogues. J Infect Dis 2004; 189: 355-9.
  • 139 MacConnachie AA, Todd WT. Potential therapeutic agents for the prevention and treatment of haemolytic uraemic syndrome in Shiga toxin producing Escherichia coli infection. Curr Opin Infect Dis 2004; 17: 479-82.
  • 140 Uchida T. STX-liposome conjugates as candidate vaccines. Drugs Today 2003; 39: 673-93.