Nuklearmedizin 2007; 46(04): 121-128
DOI: 10.1160/nukmed-0076
Zertifizierte Fortbildung
Schattauer GmbH

124I-PET dosimetry in advanced differentiated thyroid cancer: Therapeutic impact

124I-PET-Dosimetrie bei fortgeschrittenem differenzierten Schilddrüsenkarzinom: Therapeutische Relevanz 1,2Department of Nuclear Medicine (Director: Prof. Dr. med. Dr. rer. nat. A. Bockisch1, Prof. Dr. med. W. Knapp2)
L. S. Freudenberg
1   University of Duisburg/Essen
,
W. Jentzen
1   University of Duisburg/Essen
,
R. Görges
1   University of Duisburg/Essen
,
T. Petrich
2   Medizinische Hochschule Hannover, Germany
,
R. J. Marlowe
3   Independent Medical Writer and Editor, Jersey City, NJ, USA
,
J. Knust
1   University of Duisburg/Essen
,
A. Bockisch
1   University of Duisburg/Essen
› Author Affiliations
Further Information

Publication History

Received: 08 December 2006

accepted in revised form: 08 March 2007

Publication Date:
28 December 2017 (online)

Summary

Purpose: This study evaluated the impact of 124I-positron emission tomography (PET) dosimetry on post-primary surgery therapy in radioiodine-naive patients with advanced differentiated thyroid cancer (DTC). Patients, material, methods: In each of 28 thyroidectomized patients with high-risk DTC (one or more of pT4, pN1 or pM1), we gave 23.50 MBq of 124I as an oral capsule and performed PET dosimetry to calculate the individualized therapeutic 131I activity that would, insofar as possible, achieve a radioiodine dose ≥100 Gy to all metastases without exceeding 2 Gy to the blood (a surrogate for bone marrow toxicity). We thus determined the absorbed lesion dose per GBq of administered 131I activity (LDpA) based on serial PET (4, 24, 48, 72 and 96 h after oral 124I intake) and PET/computed tomography (25 h after 124I intake) and the critical blood activity (CBA) based on blood and whole-body radiation counting (2, 4, 24, 48, 72, 96 h after 124I intake). We compared the dosimetry-based interventions with our standard empirical protocol. Results: 25 patients had a total of 126 iodine-positive metastases. 18 (72%) of the 25 had solely iodine-avid metastases, while seven (28%) had both iodine- avid and -non-avid metastases. In two patients (8%), none of the iodine-avid metastases could have been practically treated with a sufficient radiation dose. Relative to the empirical protocol, 124I-PET dosimetry findings changed management in 7 (25%) patients, e. g. allowing application of activities >11 GBq 131I. Further changes included implementation of hematological back-up in a patient found to be at risk of life-threatening marrow toxicity, and early multimodal therapy in 9 (32%) patients. Conclusion: 124I-PET dosimetry is a useful routine procedure in advanced DTC and may allow safer or more effective radioiodine activities and earlier multimodal interventions than do standard empirical protocols.

Zusammenfassung

Ziel: In dieser Studie wurden die Implikationen der 124I-Positronenemissionstomographie(PET)-Dosimetrie bei Patienten mit fortgeschrittenem differenzierten Schilddrusenkarzinom (DTC) fur die erste Radioiodtherapie (RIT) untersucht. Patienten, Material, Methoden: Bei 28 thyroidektomierten Patienten mit Hochrisiko-DTC (pT4, pN1 und/oder M1) wurde eine 124I-PET-Dosimetrie nach oraler Gabe einer 124I-Kapsel (23.50 MBq) durchgefuhrt. Ziel war, die individuelle 131I-Aktivitat zu errechen, die eine Radioioddosis von ≥100 Gy in allen Metastasen erzielt, ohne die Blutdosis von 2 Gy (Surrogat fur Knochenmarktoxizitat) zu uberschreiten. Die Berechnung erfolgte durch Bestimmung der absorbierten Lasionsdosis pro verabreichter 131I-Aktivitat (LDpA) auf dem Boden serieller PET- und PET/ CT-Messungen (4, 24, 25, 48, 72 und 96 h nach 124I-Applikation) sowie der Bestimmung der kritischen Blutdosis (CBA) mittels Blutproben und Ganzkorpermessungen. Wir verglichen die Dosimetrieergebnisse mit Vorgaben der Standardprotokolle. Ergebnisse: 25 von 28 Patienten hatten 126 iodspeichernde Metastasen. 18 der 25 Patienten (72%) hatten ausschlieslich iodspeichernde Metastasen, sieben Patienten hatten zusatzlich nicht iodspeichernde Metastasen. Bei zwei Patienten (8%) hatte keine der Metastasen mit einer suffizienten Strahlendosis behandelt werden konnen. Im Vergleich zum Standardprotokoll, wurde das therapeutische Vorgehen bei sieben Patienten (25%) geandert (z. B. >11 GBq 131I appliziert). Weitere Anderungen betrafen ein hamatologisches Back-up bei einer Patientin mit dem Risiko einer lebensbedrohlichen Knochenmarktoxizitat und die Einleitung einer fruhen multimodalen Therapie bei neun Patienten (32%). Schlussfolgerung: Die 124I-PET-Dosimetrie ermoglicht die Planung individualisierter RIT und zeigt bei fortgeschrittenen DTC deutliche Anderungen des therapeutischen Vorgehens im Vergleich zu Standardtherapieprotokollen.

 
  • References

  • 1 Bal CS, Kumar A, Pant GS. Radioiodine dose for remnant ablation in differentiated thyroid carcinoma: a randomized clinical trial in 509 patients. J Clin Endocrinol Metab 2004; 89: 1666-1673.
  • 2 Benua R, Cicale N, Sonenberg M. et al. The relation of radioiodine dosimetry to results and complications in the treatment of metastatic thyroid cancer. AmJRoentgenol 1962; 87: 171-179.
  • 3 Biermann M, Pixberg MK, Dörr U. et al. Guidelines on radioiodine therapy for differentiated thyroid carcinoma. Impact on clinical practice. Nuklearmedizin 2005; 44: 229-237.
  • 4 Crawford DC, Flower MA, Pratt BE. et al. Thyroid volume measurement in thyrotoxic patients: comparison between ultrasonography and iodine-124 positron emission tomography. Eur J Nucl Med 1997; 24: 1470-1478.
  • 5 DeGrado TR, Turkington TG, Williams JJ. et al. Performance characteristics of awhole -body PET scanner. JNucl Med 1994; 35: 1398-1406.
  • 6 Dietlein M, Dressler J, Farahati F. et al. Procedure guidelines for radioiodine therapy of differentiated thyroid cancer (version 2). Nuklearmedizin 2004; 43: 115-120.
  • 7 Dorn R, Kopp J, Vogt H. et al. Dosimetry guided radioactive iodine treatment in patients with metastatic differentiated thyroid cancer: largest safe dose using a risk-adapted approach. J Nucl Med. 2003; 44: 451-456.
  • 8 Erdi YE, Macapinlac H, Larson SM. et al. Radiation dose assessment for I-131 therapy of thyroid cancer using I-124 PET imaging. Clin Pos Imag 1999; 2: 41-46.
  • 9 Eschmann SM, Reischl G, Bilger K. et al. Evaluation of dosimetry of radioiodine therapy in benign and malignant thyroid disorders by means of iodine-124 and PET. Eur J Nucl Med 2002; 29: 760-767.
  • 10 Fleming ID, Cooper JS, Henson DE. (eds) AJCC cancer staging manual. American Joint Committee on Cancer. Philadelphia: Lippincott Raven; 1997
  • 11 Flower McCready VR. Radionuclide therapy dose calculations: what accuracy can be achieved?. Eur J Nucl Med 1997; 24: 1462.
  • 12 Freudenberg LS, Antoch G, Knust J. et al. Value of 124I-PET/CT in staging of patients with differentiated thyroid cancer. Eur Radiol 2004; 14: 2092-2098.
  • 13 Freudenberg LS, Bockisch A, Jentzen W. 124IPosi- tron Emission Tomographic Dosimetry and Positron Emission Tomography / Computed Tomography Imaging in Differentiated Thyroid Cancer. In: Biersack HJ, Grünwald F. (eds). Thyroid Cancer. Berlin, Heidelberg: Springer; 2005
  • 14 Frey P, Townsend D, Flattet A. et al. Tomographic imaging of the human thyroid using I-124. J Clin Endocrinol Metab 1986; 63: 918-927.
  • 15 Frey P, Townsend D, Jeavons A. et al. In vivo imaging of the human thyroid with a positron camera using 124I. Eur JNucl Med 1985; 10: 472-476.
  • 16 Furhang EE, Larson SM, Buranapong P. et al. Thyroid cancer dosimetry using clearance fitting. J Nucl Med 1999; 40: 131-136.
  • 17 Herzog H, Tellmann L, Qaim SM. et al. PET quantitation and imaging of the non-pure positron-emitting iodine isotope 124I. Appl Radiat Isot 2002; 56: 673-679.
  • 18 Jentzen W, Freudenberg L, Eising EG. et al. Segmentation of PET volumes by iterative image thresholding. J Nucl Med 2007; 48: 108-114.
  • 19 Jentzen W, Freudenberg L, Heinze M. et al. Analyse der Iod-124-Zeitaktivitätskurven bei der Lä- sionsdosimetrie beim differenzierten Schilddrüsenkarzinom: Das 3-Tage-Protokoll ist ausreichend. Nuklearmedizin. 2006 45. A28.
  • 20 Knust EJ, Dutschka K, Weinreich R. Preparation of 124I solutions after thermodistillation of irradiated 124Te02 targets. Appl Radiat Isot 2000; 52: 181-184.
  • 21 Lambrecht RM, Woodhouse N, Phillips R. et al. Investigational study of iodine-124 with a positron camera. Am JPhysiol Imaging 1988; 3: 197-200.
  • 22 Lassmann M, Luster M, Hänscheid H. et al. Impact of 131I diagnostic activities on the biokinetics of thyroid remnants. JNuclMed 2004; 45: 619-625.
  • 23 Loevinger R, Budinger TF, Watson EE. MIRD Primer for Absorbed Dose Calculations. New York: Society of Nuclear Medicine; MIRD 1991
  • 24 Maxon HR, Englaro EE, Thomas SR. et al. Radio- iodine-131 therapy for well differentiated thyroid cancer: a quantitative radiation dosimetric approach - outcome and validation in 85 patients. J Nucl Med 1992; 33: 1132-1116.
  • 25 Maxon HR, Thomas SR, Hertzberg VS. et al. Relation between effective radiation dose and outcome of radioiodine therapy for thyroid cancer. N Engl J Med 1983; 309: 937-941.
  • 26 Maxon HR, Thomas SR, Samaratunga RC. Dosimetric considerations in the radioiodine treatment of macrometastases and micrometastases from differentiated thyroid cancer. Thyroid 1997; 7: 183-187.
  • 27 Meller B, von Hof K, Genina E. et al. Diagnostic 123I and 131I activities and radioiodine therapy. Effects on urinary iodine excretion in patients with differentiated thyroid carcinoma. Nuklearmedizin 2005; 44: 243-248.
  • 28 O'Connell ME, Flower MA, Hinton PJ. et al. Radiation dose assessment in radioiodine therapy: dose-response relationships in differentiated thyroid carcinoma using quantitative scanning and PET. Radiother Oncol 1993; 28: 16-26.
  • 29 Pentlow KS, Graham MC, Lambrecht RM. et al. Quantitative imaging of iodine-124 with PET. J Nucl Med 1996; 37: 1557-1562.
  • 30 Robbins RJ, Schlumberger MJ. The evolving role of 131I for the treatment of differentiated thyroid carcinoma. J Nucl Med 2005; 46: 28S-37S.
  • 31 Sawka AM, Thephamongkhol K, Brouwers M. et al. A systematic review and metaanalysis of the effectiveness of radioactive iodine remnant ablation for well-differentiated thyroid cancer. J Clin Endocrinol Metab 2004; 89: 3668-3676.
  • 32 Schmitz G, Fuzesi L, Struck J. et al. Expression of the sodium iodide symporter in differentiated thyroid cancer: clinical evidence. Nuklearmedizin 2005; 44: 86-93.
  • 33 Schwab R, Wieler H, Birtel S. et al. Confronting the practice of surgery on differentiated thyroid cancer with current guidelines in Germany. A multicenter trial. Nuklearmedizin 2005; 44: 185-191.
  • 34 Sgouros G, Kolbert K, Sheikh A. et al. Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med 2004; 45: 1366-1372.
  • 35 Snyder WS, Ford MR, Warner GG. et al. “S,” Absorbed dose per unit cumulated activity for selected radionuclides and organs. MIRD Pamphlet 11. New York: Society of Nuclear Medicine; 1975
  • 36 Stergar H, Jentzen W, Heinze M. et al. Iod-124-Do- simetrie bei differenziertem Schilddrüsenkarzinom. Vergleich verschiedener Protokolle. Nuklearmedizin. 2005 44. A70.