Subscribe to RSS
![](/products/assets/desktop/img/oa-logo.png)
DOI: 10.1590/0004-282X-ANP-2020-0575
Congenital myasthenic syndrome in a cohort of patients with ‘double’ seronegative myasthenia gravis
Síndrome miastênica congênita em uma série de pacientes com miastenia gravis duplo soronegativa![](https://www.thieme-connect.de/media/10.1055-s-00054595/202201/lookinside/thumbnails/10-1590-0004-282x-anp-2020-0575_20200575-1.jpg)
ABSTRACT
Background: Congenital myasthenic syndromes (CMS) have some phenotypic overlap with seronegative myasthenia gravis (SNMG). Objective: The aim of this single center study was to assess the minimum occurrence of CMS misdiagnosed as double SNMG in a Brazilian cohort. Methods: The genetic analysis of the most common mutations in CHRNE, RAPSN, and DOK7 genes was used as the main screening tool. Results: We performed genetic analysis in 22 patients with a previous diagnosis of ‘double’ SNMG. In this study, one CMS patient was confirmed due to the presence of compound heterozygous variants in the CHRNE gene (c.130insG/p.Cys210Phe). Conclusions: This study confirmed that CMS due to CHNRE mutations can be mistaken for SNMG. In addition, our study estimated the prevalence of misdiagnosed CMS to be 4.5% in ‘double’ SNMG patients of our center. Based on our findings, genetic screening could be helpful in the diagnostic workup of patients with ‘double’ SNMG in whom differential diagnosis is recommended.
RESUMO
Antecedentes: As síndromes miastênicas congênitas (SMC) podem ter sobreposição fenotípica com a miastenia gravis soronegativa (MG-SN). Objetivo: Estabelecer a prevalência mínima de SMC diagnosticada inicialmente como MG duplo soronegativa em uma série de casos brasileiros. Métodos: A análise genética das mutações mais comuns nos genes CHRNE, RAPSN e DOK7 foi usada como o principal exame de triagem. Resultados: Vinte e dois pacientes com diagnóstico prévio de MG-SN foram geneticamente analisados, sendo que uma paciente foi confirmada com SMC devido a presença de variante em heterozigose composta no gene CHRNE (c.130insG/p.Cys210Phe). Conclusões: O presente estudo confirma que SMC devido mutação no gene CHNRE pode ser inicialmente diagnosticada como MG-SN. O estudo estimou como 4,5% a prevalência de diagnóstico de SMC entre nossos pacientes préviamente diagnosticados como MG-SN. Com base nesse estudo, a análise genética pode ser recomendada para investigação do diagnóstico diferencial em pacientes com MG-SN.
Authors’ contributions:
PJL: conceptualization, data curation, formal analysis, investigation, methodology, project administration, validation, writing-original draft, writing-review & editing; RDD: data curation, investigation, writing-review & editing; RCA, NMCH: formal analysis, methodology, writing-review & editing; OHF: investigation, writing-review & editing; AT, HL: methodology, writing-review & editing; LCW: data curation, investigation, supervision, writing-review & editing; CSKK: data curation, formal analysis, investigation, supervision, writing-review & editing; RHS: conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, project administration, supervision, validation, visualization, writing-original draft, writing-review & editing.
Support
This study was supported by Universidade Federal do Paraná (UFPR) and Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq).
Publication History
Received: 08 December 2020
Accepted: 27 February 2021
Article published online:
30 January 2023
© 2021. Academia Brasileira de Neurologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
REFERENCES
- 1 Lorenzoni PJ, Scola RH, Kay CSK, Werneck LC. Congenital myasthenic syndrome: a brief review. Pediatr Neurol 2012; 46 (03) P141-P148 https://doi.org/10.1016/j.pediatrneurol.2011.12.001
- 2 Souza PVS, Batistella GNR, Lino VC, Pinto WBVR, Annes M, Oliveira ASB. Clinical and genetic basis of congenital myasthenic syndromes. Arq Neuropsiquiatr 2016; 74 (09) 750-760 https://doi.org/10.1590/0004-282X20160106
- 3 Alseth EH, Maniaol AH, Elsais A, Nakkestad HL, Tallaksen C, Gilhus NE. et al. Investigation for RAPSN and DOK-7 mutations in a cohort of seronegative myasthenia gravis patients. Muscle Nerve 2011; 43 (04) 574-577 https://doi.org/10.1002/mus.21919
- 4 Burke G, Cossins J, Maxwell S, Owens G, Vincent A, Robb S. et al. Rapsyn mutations in hereditary myasthenia: distinct early- and late onset phenotypes. Neurology 2003; 61 (06) 826-828 https://doi.org/10.1212/01.wnl.0000085865.55513.ae
- 5 Burke G, Cossins J, Maxwell S, Robb S, Nicolle M, Vicent A. et al. Distinct phenotypes of congenital acetylcholine receptor deficiency. Neuromuscul Disord 2004; 14 (06) P356-P364 https://doi.org/10.1016/j.nmd.2004.03.005
- 6 Kao JC, Milone M, Selcen D, Shen X-M, Engel AG, Liewluck T. Congenital myasthenic syndromes in adult neurology clinic: a long road to diagnosis and therapy. Neurology 2018; 91 (19) e1770-e1777 https://doi.org/10.1212/WNL.20200575202005756478
- 7 Garg N, Yiannikas C, Hardy TA, Belaya K, Cheung J, Beeson D. et al. Late presentations of congenital myasthenic syndromes: How many do we miss?. Muscle Nerve 2016; 54 (04) 721-727 https://doi.org/10.1002/mus.25085
- 8 Kinali M, Beeson D, Pitt MC, Jungbluth H, Simonds AK, Aloysius A. et al. Congenital myasthenic syndromes in childhood: diagnostic and management challenges. J Neuroimmunol 2008; 201: P6-12 https://doi.org/10.1016/j.jneuroim.2008.06.026
- 9 Argov Z. Current approach to seronegative myasthenia. J Neurol 2011; 258 (01) 14-18 https://doi.org/10.1007/s00415-010-5746-6
- 10 Sanders DB, Wolfe GI, Benatar M, Evoli A, Gilhus NE, Illa I. et al. International consensus guidance for management of myasthenia gravis: executive summary. Neurology 2016; 87 (04) 419-425 https://doi.org/10.1212/WNL.20200575202005752790
- 11 Abicht A, Dusl M, Gallenmüller C, Guergueltcheva V, Schara U, Marina AD. et al. Congenital myasthenic syndromes: achievements and limitations of phenotype-guided gene-after-gene sequencing in diagnostic practice: a study of 680 patients. Hum Mutat 2012; 33 (10) 1474-1484 https://doi.org/10.1002/humu.22130
- 12 Mihaylova V, Scola RH, Gervini B, Lorenzoni PJ, Kay CK, Werneck LC. et al. Molecular characterisation of congenital myasthenic syndromes in Southern Brazil. J Neurol Neurosurg Psychiatry 2010; 81 (09) 973-977 https://doi.org/10.1136/jnnp.2009.177816
- 13 Estephan EP, Sobreira CFDR, Dos Santos ACJ, Tomaselli PJ, Marques Jr W, Ortega RPM. et al. A common CHRNE mutation in Brazilian patients with congenital myasthenic syndrome. J Neurol 2018; 265 (03) 708-713 https://doi.org/10.1007/s00415-018-8736-8
- 14 Estephan EP, Zambon AA, Marchiori PE, Silva AMS, Caldas VM, Moreno CAM. et al. Clinical variability of early-onset congenital myasthenic syndrome due to biallelic RAPSN mutations in Brazil. Neuromuscul Disord 2018; 28 (11) P961-P964 https://doi.org/10.1016/j.nmd.2018.08.007
- 15 Müller JS, Herczegfalvi A, Vilchez JJ, Colomer J, Bachinski LL, Mihaylova V. et al. Phenotypical spectrum of DOK7 mutations in congenital myasthenic syndromes. Brain 2007; 130 (06) 1497-1506 https://doi.org/10.1093/brain/awm068
- 16 Selcen D, Milone M, Shen X-M, Harper CM, Stans AA, Wieben ED. et al. Dok-7 myasthenia: phenotypic and molecular genetic studies in 16 patients. Ann Neurol 2008; 64 (01) 71-87 https://doi.org/10.1002/ana.21408
- 17 Mahjneh I, Lochmüller H, Muntoni F, Abicht A. DOK7 limb-girdle myasthenia syndrome mimicking congenital muscular dystrophy. Neuromuscul Disord 2013; 23 (01) P36-P42 https://doi.org/10.1016/j.nmd.2012.06.355
- 18 Lorenzoni PJ, Kay CSK, Arndt RC, Hrysay NMC, Ducci RD-P, Fustes OHJ. et al. Congenital myasthenic syndrome due to DOK7 mutation in a cohort of patients with 'unexplained' limb-girdle muscular weakness. J Clin Neurosci 2020; 75: P195-P198 https://doi.org/10.1016/j.jocn.2020.01.080
- 19 Gurnett CA, Bodnar JA, Neil J, Connolly AM. Congenital myasthenic syndrome: presentation, electrodiagnosis, and muscle biopsy. J Child Neurol 2004; 19 (03) 175-182 https://doi.org/10.1177/0883073804019003011
- 20 Lorenzoni PJ, Scola RH, Kay CSK, Lochmüller H, Werneck LC. Congenital myasthenic syndrome and minicore-like myopathy with DOK7 mutation. Muscle Nerve 2013; 48 (01) 151-152 https://doi.org/10.1002/mus.23724
- 21 Balaraju S, Töpf A, McMacken G, Kumar VP, Pechmann A, Roper H. et al. Congenital myasthenic syndrome with mild intelectual disability caused by a recurrent SLC25A21 variant. Eur J Hum Genet 2020; 28 (03) 373-377 https://doi.org/10.1038/s41431-019-0506-2
- 22 Helman G, Sharma S, Crawford J, Patra B, Jain P, Bent SJ. et al. Leukoencephalopathy due to variants in GFPT1-associated concenital myasthenic syndrome. Neurology 2019; 92 (06) e587-e593 https://doi.org/10.1212/WNL.20200575202005756886
- 23 Monies DM, Al-Hind HN, Al-Muhaizea MA, Jaroudi DJ, Al-Younes B, Naim EA. et al. Clinical and pathological heterogeneity of a congenital disorder of glycosylation manifesting as a myasthenic/myopathic syndrome. Neuromuscul Disord 2014; 24 (04) P353-P359 https://doi.org/10.1016/j.nmd.2013.12.010