Subscribe to RSS
DOI: 10.3413/nuk-2011041
PET- und SPECT-Untersuchungen von Hirn tumoren mit radioaktiv markierten Aminosäuren
German guidelines for brain tumour imaging by PET and SPECT using labelled amino acidsPublication History
received:
06 July 2011
accepted in revised form:
06 July 2011
Publication Date:
28 December 2017 (online)
Summary
For the primary diagnosis of brain tumours, morphological imaging by means of magnetic resonance imaging (MRI) is the current method of choice. The complementary use of functional imaging by positron emitting tomography (PET) and single photon emitting computerized tomography (SPECT) with labelled amino acids can provide significant information on some clinically relevant questions, which are beyond the capacity of MRI. These diagnostic issues affect in particular the improvement of biopsy targeting and tumour delineation for surgery and radiotherapy planning. In addition, amino acid labelled PET and SPECT tracers are helpful for the differentiation between tumour recurrence and non-specific post-therapeutic tissue changes, in predicting prognosis of low grade gliomas, and for metabolic monitoring of treatment response. The application of dynamic PET examination protocols for the assessment of amino acid kinetics has been shown to enable an improved non-invasive tumour grading.
The purpose of this guideline is to provide practical assistance for indication, examination procedure and image analysis of brain PET/ SPECT with labelled amino acids in order to allow for a high quality standard of the method. After a short introduction on pathobiochemistry and radiopharmacy of amino acid labelled tracers, concrete and detailed information is given on the several indications, patient preparation and examination protocols as well as on data reconstruction, visual and quantitative image analysis and interpretation. In addition, possible pitfalls are described, and the relevant original publications are listed for further information.
Zusammenfassung
Während für die Primärdiagnostik von Hirn - tumoren die Magnetresonanztomographie (MRT) das Verfahren der Wahl darstellt, kommt der funktionellen Bildgebung mittels PET und SPECT unter Verwendung markierter Aminosäuren besondere Bedeutung für weitergehende Fragestellungen zu. Diese betreffen die Bestimmung des optimalen Biopsieorts und der genauen Tumorausdehnung sowie auch die Therapiekontrolle, Prognose und die Rezdivdiagnostik. Darüber hinaus können dynamische PET-Messprotokolle wichtige Informationen zum nicht invasiven Tumor - grading liefern.
Die vorliegende Leitlinie soll dem Arzt eine praxisorientierte Hilfestellung zur Indikation, Durchführung und Auswertung der PET/ SPECT mit Aminosäure-Tracern bieten, um damit einen hohen Qualitätsstandard dieser wichtigen Methode zu gewährleisten. Nach einer kurzen Einführung in die Pathobiochemie und Radiopharmazie markierter Aminosäuren liefert die Leitlinie konkrete und detaillierte Informationen zur Indikationsstellung, der Untersuchungsvorbereitung und -durchführung, der Datenrekonstruktion sowie zur visuellen und quantitativen Bildanalyse und -interpretation. Zusätzlich erfolgt eine Darstellung der möglichen Fehlerquellen sowie der relevanten Originalarbeiten.
-
Literatur
- 1 Deloar HM, Fujiwara T, Nakamura T. et al. Estimation of internal absorbed dose of L-[methyl-11C]methionine using whole-body positron emission tomography. Eur J Nucl Med 1998; 25: 629-633.
- 2 Floeth FW, Pauleit D, Sabel M. et al. Prognostic value of O-(2-[18F]fluoroethyl)-L-tyrosine PET and MRI in low-grade glioma patients. J Nucl Med 2007; 48: 519-527.
- 3 Goldman S, Levivier M, Pirotte B. et al. Regional methionine and glucose uptake in high-grade gliomas: A comparative study on PET-guided stereotactic biopsy. J Nucl Med 1997; 38: 1459-1462.
- 4 Grosu AL, Weber WA, Riedel E. et al. L-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. Int J Radiat Oncol Biol Phys 2005; 63: 64-74.
- 5 Herholz K, Hölzer T, Bauer B. et al. 11C-methionine PET for differential diagnosis of low-grade-gliomas. Neurology 1998; 50: 1316-1322.
- 6 Jager PL, Vaalburg W, Pruim J. et al. Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med 2001; 42: 432-445.
- 7 Kracht LW, Miletic H, Busch S. et al. Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res 2004; 10: 7163-7170.
- 8 Kuwert T, Morgenroth C, Woesler B. et al. Uptake of iodine-123-alpha-methyl tyrosine by gliomas and non-neoplastic brain lesions. Eur J Nucl Med 1996; 23: 1345-1353.
- 9 Kuwert T, Woesler B, Morgenroth C. et al. Diagnosis of recurrent glioma with SPECT and iodine-123-alpha-methyl tyrosine. J Nucl Med 1998; 39: 23-27.
- 10 Langen KJ, Hamacher K, Weckesser M. et al. O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 2006; 33: 287-294.
- 11 Langen KJ, Pauleit D, Coenen HH. 3-[123I]Iodo-a-methyl-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol 2002; 29: 631
- 12 Mosskin M, Ericson K, Hindmarsh T. et al. Positron emission tomography compared with magnetic resonance imaging and computed tomography in supratentorial gliomas using multiple stereotactic biopsies as reference. Acta Radiol 1989; 30: 225-232.
- 13 Pauleit D, Floeth F, Hamacher K. et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with magnetic resonance imaging improves the diagnostic assessment of cerebral gliomas. Brain 2005; 128: 678-687.
- 14 Pauleit D, Floeth F, Herzog H. et al. Whole-body distribution and dosimetry of O-(2-[18F]fluoroethy)-L-tyrosine. Eur J Nucl Med Mol Imaging 2003; 30: 519-524.
- 15 Pauleit D, Stoffels G, Bachofner A. et al. Comparison of 18F-FET and 18F-FDG PET in brain tumors. Nucl Med Biol 2009; 36: 779-787.
- 16 Piroth MD, Pinkawa M, Holy R. et al. Prognostic value of early 18F-fluoroethyltyrosine PET after radiochemotherapy in glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2011; 80: 176-184.
- 17 Pirotte B, Goldman S, Massager N. et al. Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med 2004; 45: 1293-1298.
- 18 Pirotte BJ, Levivier M, Goldman S. et al. Positron emission tomography-guided volumetric resection of supratentorial high-grade gliomas: a survival analysis in 66 consecutive patients. Neurosurgery 2009; 64: 471-481.
- 19 Pöpperl G, Götz C, Rachinger W. et al. Serial O-(2-[18F]fluoroethyl)-L-tyrosine PET for monitoring the effects of intracavitary radioimmunotherapy in patients with malignant glioma. Eur J Nucl Med Mol Imaging 2006; 33: 792-800.
- 20 Pöpperl G, Götz C, Rachinger W. et al. Value of O-(2-[18F]fluoroethyl)-L-tyrosine PET for the diagnosis of recurrent glioma. Eur J Nucl Med Mol Imaging 2004; 31: 1464-1470.
- 21 Pöpperl G, Kreth FW, Herms J. et al. Analysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods?. J Nucl Med 2006; 47: 393-403.
- 22 Pöpperl G, Kreth FW, Mehrkens JH. et al. FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging 2007; 34: 1933-1942.
- 23 Ribom D, Eriksson A, Hartman M. et al. Positron emission tomography 11C-methionine and survival in patients with low-grade gliomas. Cancer 2001; 92: 1541-1549.
- 24 Riemann B, Papke K, Hoess N. et al. Noninvasive grading of untreated gliomas: a comparative study of MR imaging and 3-(iodine-123)-L-alpha-methyltyrosine SPECT. Radiology 2002; 225: 567-574.
- 25 Schmidt D, Langen KJ, Herzog H. et al. Whole-body kinetics and dosimetry of L-3-123I-iodo-alpha-methyltyrosine. Eur J Nucl Med 1997; 24: 1162-1166.
- 26 Singhal T, Narayanan TK, Jain V. et al. 11C- L-methionine positron emission tomography in the clinical management of cerebral gliomas. Mol Imaging Biol 2008; 10: 1-18.
- 27 Van Laere K, Ceyssens S, Van Calenbergh F. et al. Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging 2005; 32: 39-51.
- 28 Vander Borght T, Asenbaum S, Bartenstein P. et al. European Association of Nuclear Medicine (EANM). EANM procedure guidelines for brain tumour imaging using labelled amino acid analogues. Eur J Nucl Med Mol Imaging 2006; 33: 1374-1380.
- 29 Weber WA, Dick S, Reidl G. et al. Correlation between postoperative 3-[123I]iodo-L-alpha-methyltyrosine uptake and survival in patients with gliomas. J Nucl Med 2001; 42: 1144-1150.
- 30 Würker M, Herholz K, Voges J. et al. Glucose consumption and methionine uptake in low-grade gliomas after iodine-125 brachytherapy. Eur J Nucl Med 1996; 23: 583-586.