Subscribe to RSS
DOI: 10.3413/nukmed-0263
18F-FDG-PET and MRI in patients with malignancies of the liver and pancreas
Accuracy of retrospective multimodality image registration by using the CT-component of PET/CT 18F-FDG-PET und MRT bei Patienten mit malignen Leber- und PankreasläsionenGenauigkeit der retro spektiven PET/MRI-Registrierung durch Verwendung der CT-Komponente der PET/CTPublication History
received:
16 July 2009
accepted in revised form:
25 February 2010
Publication Date:
24 January 2018 (online)
Summary
Purpose: To evaluate the accuracy of retrospective rigid image registration and fusion between F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) and magnetic resonance imaging (MRI) of the upper abdomen. Patients, material, methods: Image fusion of PET and MRI was performed in 30 patients with suspected malignancy of the liver or pancreas. Using a commercially available image fusion tool capable of rigid manual point-based registration, PET-Images were retrospectively registered and fused by matching eight homologous points in the 3D spoiled gradient echo (GRE) MRI sequences acquired in portal venous phase and in the CT-component of PET/CT. Two separate observers (R1, R2) assessed accuracy of image registration by determining the distances in the x-, y- and z-axis as well as the absolute distance between anatomical landmarks which differed from the landmarks chosen for registration. Quality of fusion was graded using a three point grading scale (1 poorly fused; 2 satisfactory fused; 3 correctly fused) and compared to hybrid PET/CT fusion. Results: Mean time of registration per patient was less than 2 minutes. Objective registration assessment showed errors between 2.4–6.3 mm in x-axis: mean 3.6 mm (R1); 4.6 mm (R2), 2.3–9.3 mm in y-axis (mean 5.1 mm; 5.5 mm) and 3.3–12.0 mm in z-axis (mean 5.9 mm; 5.9 mm.) The mean error in absolute distance between points was 6.0–16.8 mm (mean 9.9 mm; 10.6 mm). In visual assessment, most fusions were graded to be satisfactory or correctly fused: R1, R2: grade 3, 11/30 (36.7%), 22/30 (73.3%); grade 2, 13/30 (43.3%), 8/30 (26.7%); grade 1, 6/30 (20%), 0/30 (0%). Fusions were mostly comparable to hybrid PET/ CT fusions. All of the fusions were defined as diagnostically relevant by both observers. Conclusion: Retrospective rigid image fusion of FDGPET and MRI of the upper abdomen using the CT-component of PET/CT for registration is feasible without adaptation in image acquisition protocols and shows sub-centimeter registration errors in most cases.
Zusammenfassung
Ziel: Evaluation der Genauigkeit der retrospektiven rigiden Bildregistrierung und -fusion von 18F-Fluordeoxyglukose Positronenemissions-tomographie (FDG-PET) und Magnetresonanztomographie (MRI) im Oberbauch. Patienten, Material, Methoden: Die Bildfusion von PET und MRI wurde in 30 Patienten mit Verdacht auf maligne Leber- oder Pankreasläsionen durchgeführt. Mit Hilfe einer frei erhältlichen Software, welche die rigide, manuelle und punktbasierte Registrierung ermöglicht, wurden PET-Bilder mittels acht homologer Punkten einer 3D Gradienten - echosequenz der MRI sowie der CT-Komponente der PET/CT registriert und fusioniert. Zwei Radiologen (R1, R2) evaluierten die Genauigkeit der Bildregistrierung und -fusion durch Bestimmung der Distanzen in der x-, yund z-Achse sowie durch Bestimmung der absoluten Distanz zwischen anatomischen Landmarken welche sich von den Landmarken, welche zur Registrierung benutzt wurden unterschieden. Die Qualität der Fusion wurde subjektiv mittels einer Drei-Punkte-Skala bewertet (1, ungenügend fusioniert; 2 zufriedenstellend fusioniert; 3 korrekt fusioniert) und mit der Hybrid PET/CT Fusion verglichen. Resultate: Die durchschnittliche Zeit, welche zur Fusion pro Patient aufgewendet wurde betrug weniger als zwei Minuten. Die Messung der Distanzen zwischen homologen Punkten zeigte Registrierungsfehler zwischen 2.4–6.3 mm in x-Richtung: Durchschnitt 3.6 mm (R1); 4.6 mm (R2), 2.3–9.3 mm in y-Richtung (5.1 mm; 5.5 mm) und 3.3–12mm in z-Richtung (5.9 mm; 5.9 mm). Der durchschnittliche Registrierungsfehler der absoluten Distanz zwischen zwei homologen Punkten betrug 6.0–16.8 mm (9.9 mm; 10.6 mm). In der subjektiven, visuellen Auswertung der Fusionsgenauigkeit zeigten die meisten Fusionen ein zufriedenstellendes oder korrektes Resultat: R1, R2: Grad 3, 11/30 (36.7%), 22/30 (73.3%); Grad 2, 13/30 (43.3%), 8/30 (26.7%); Grad 1, 6/30 (20%), 0/30 (0%). Die meisten Fusionen waren subjektiv vergleichbar mit denen des Hybrid PET/CT Systems. Sämtliche Fusionen wurden von beiden Radiologen als diagnostisch bewertet. Schlussfolgerung: Die retrospektive, rigide Bildfusion von FDG-PET und MRI im Oberbauch durch Benutzung der CT-Komponente der PET/CT für die Registrierung ist ohne Anpassung der Akquisitionsprotokolle durchführbar und zeigt in den meisten Fällen Registrierungsfehler im Sub- Zentimeter-Bereich.
-
References
- 1 Tsai CC, Tsai CS, Ng KK. et al. The impact of image fusion in resolving discrepant findings between FDG-PET and MRI/CT in patients with gynaecological cancers. Eur J Nucl Med Mol Imaging 2003; 30: 1674-1683.
- 2 Bar-Shalom R, Yefremov N, Guralnik L. et al. Clinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient management. J Nucl Med 2003; 44: 1200-1209.
- 3 Bockisch A, Beyer T, Antoch G. et al. Principles of PET/CT and clinical application. Radiologe 2004; 44: 1045-1054.
- 4 Delbeke D, Martin WH. Positron emission tomography imaging in oncology. Radiol Clin North Am 2001; 39: 883-917.
- 5 Lemke AJ, Niehues SM, Hosten N. et al. Retrospective digital image fusion of multidetector CT and 18F-FDG PET: clinical value in pancreatic lesions-- a prospective study with 104 patients. J Nucl Med 2004; 45: 1279-1286.
- 6 Selzner M, Hany TF, Wildbrett P. et al. Does the novel PET/CT imaging modality impact on the treatment of patients with metastatic colorectal cancer of the liver?. Ann Surg 2004; 240: 1027-1034.
- 7 Slomka PJ. Software approach to merging molecular with anatomic information. J Nucl Med 2004; 45 (Suppl 1) 36S-45S.
- 8 Veit P, Antoch G, Stergar H. et al. Detection of residual tumor after radiofrequency ablation of liver metastasis with dual-modality PET/CT: initial results. Eur Radiol 2006; 16: 80-87.
- 9 Eschmann SM, Pfannenberg AC, Rieger A. et al. Comparison of nC-choline-PET/CT and whole body-MRI for staging of prostate cancer. Nuklearmedizin 2007; 46: 161-168.
- 10 Antoch G, Saoudi N, Kuehl H. et al. Accuracy of whole-body dual-modality fluorine-18-2- fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/ CT) for tumor staging in solid tumors: comparison with CT and PET. J Clin Oncol 2004; 22: 4357-4368.
- 11 Hany TF, Steinert HC, Goerres GW. et al. PET diagnostic accuracy: improvement with in-line PET-CT system: initial results. Radiology 2002; 225: 575-581.
- 12 Kamel IR, Cohade C, Neyman E. et al. Incremental value of CT in PET/CT of patients with colorectal carcinoma. Abdom Imaging 2004; 29: 663-668.
- 13 Romer W, Nomayr A, Greess H. et al. Retrospective interactive rigid fusion of 18F-FDG-PET and CT. Additional diagnostic information in melanoma patients. Nuklearmedizin 2006; 45: 88-95.
- 14 Hussain SM, Semelka RC. Hepatic imaging: comparison of modalities. Radiol Clin North Am 2005; 43: 929-947.
- 15 Robinson P. Hepatocellular carcinoma: development and early detection. Cancer Imaging 2008; 8 (Suppl A) S128-S131.
- 16 Semelka RC, Martin DR, Balci C, Lance T. Focal liver lesions: comparison of dual-phase CT and multisequence multiplanar MR imaging including dynamic gadolinium enhancement. J Magn Reson Imaging 2001; 13: 397-401.
- 17 Ward J, Robinson PJ, Guthrie JA. et al. Liver metastases in candidates for hepatic resection: comparison of helical CT and gadolinium- and SPIO-en- hanced MR imaging. Radiology 2005; 237: 170-180.
- 18 Pichler BJ, Wehrl HF, Judenhofer MS. Latest advances in molecular imaging instrumentation. J Nucl Med 2008; 49 (Suppl 2) 5S-23S.
- 19 Schlemmer HP, Pichler BJ, Schmand M. et al. Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology 2008; 248: 1028-1035.
- 20 Lemke AJ, Niehues SM, Amthauer H. et al. Clinical use of digital retrospective image fusion of CT, MRI, FDG-PET and SPECT - fields of indications and results. Rofo 2004; 176: 1811-1818.
- 21 Ruf J, Lopez Hanninen E, Bohmig M. et al. Impact of FDG-PET/MRI image fusion on the detection of pancreatic cancer. Pancreatology 2006; 6: 512-519.
- 22 Delbeke D, Coleman RE, Guiberteau MJ. et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med 2006; 47: 885-895.
- 23 Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 1: 307-310.
- 24 Bland JM, Altman DG. Comparing methods of measurement: why plotting difference against standard method is misleading. Lancet 1995; 346: 1085-1087.
- 25 Forster GJ, Laumann C, Nickel O. et al. SPET/CT image co-registration in the abdomen with a simple and cost-effective tool. Eur J Nucl Med Mol Imaging 2003; 30: 32-39.
- 26 Somer EJ, Benatar NA, O'Doherty MJ. et al. Use of the CT component of PET-CT to improve PET-MR registration: demonstration in soft-tissue sarcoma. Phys Med Biol 2007; 52: 6991-7006.
- 27 West J, Fitzpatrick JM, Wang MY. et al. Comparison and evaluation of retrospective intermodality brain image registration techniques. J Comput Assist Tomogr 1997; 21: 554-566.
- 28 Borgwardt L, Hojgaard L, Carstensen H. et al. Increased fluorine-18 2-fluoro-2-deoxy-D-glucose (FDG) uptake in childhood CNS tumors is correlated with malignancy grade: a study with FDG positron emission tomography/magnetic resonance imaging coregistration and image fusion. J Clin Oncol 2005; 23: 3030-3037.
- 29 Pauleit D, Floeth F, Hamacher K. et al. O-(2-[18F]flu- oroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 2005; 128: 678-687.
- 30 Beyer T, Pietrzyk U, Knoess C. et al. Multi-modality imaging of uveal melanomas using combined PET/ CT, high-resolution PET and MR imaging. Nuklearmedizin 2008; 47: 73-79.
- 31 Kiebel SJ, Ashburner J, Poline JB, Friston KJ. MRI and PET coregistration - a cross validation of statistical parametric mapping and automated image registration. Neuroimage 1997; 5: 271-279.
- 32 Woods RP, Mazziotta JC, Cherry SR. MRI-PET registration with automated algorithm. J Comput Assist Tomogr 1993; 17: 536-546.
- 33 Maes F, Collignon A, Vandermeulen D. et al. Multi- modality image registration by maximization of mutual information. IEEE Trans Med Imaging 1997; 16: 187-198.
- 34 Wells 3rd WM, Viola P, Atsumi H. et al. Multi-modal volume registration by maximization of mutual information. Med Image Anal 1996; 1: 35-51.
- 35 Von Siebenthal M, Szekely G, Lomax AJ, Cattin PC. Systematic errors in respiratory gating due to intra-fraction deformations of the liver. Med Phys 2007; 34: 3620-3629.
- 36 Wolz G, Nomayr A, Hothorn T. et al. Anatomical accuracy of interactive and automated rigid registration between X-ray CT and FDG-PET. Nuklearmedizin 2007; 46: 43-48.
- 37 Inagaki H, Kato T, Tadokoro M. et al. Interactive fusion of three-dimensional images of upper abdominal CT and FDG PET with no body surface markers. Radiat Med 1999; 17: 155-163.
- 38 Nakamoto Y, Sakamoto S, Okada T. et al. Accuracy of image fusion using a fixation device for whole- body cancer imaging. AJR Am J Roentgenol 2005; 184: 1960-1966.
- 39 Rizzo G, Castiglioni I, Arienti R. et al. Automatic registration of PET and CT studies for clinical use in thoracic and abdominal conformal radiotherapy. Q J Nucl Med Mol Imaging 2005; 49: 267-279.
- 40 Kim JH, Czernin J, Allen-Auerbach MS. et al. Comparison between 18F-FDG PET, in-line PET/CT, and software fusion for restaging of recurrent colorectal cancer. J Nucl Med 2005; 46: 587-595.
- 41 Lange T, Wenckebach TH, Lamecker H. et al. Registration of different phases of contrast-enhanced CT/MRI data for computer-assisted liver surgery planning: evaluation of state-of-the-art methods. Int J Med Robot 2005; 1: 6-20.