Subscribe to RSS
DOI: 10.3415/VCOT-08-03-0029
Morphological and biomechanical studies on the common calcaneal tendon in dogs
Publication History
Received
28 March 2008
Accepted
19 March 2008
Publication Date:
17 December 2017 (online)
Summary
Spontanous rupture at the distal part of the gastrocnemius tendon (GT) is the second most common non-traumatic tendon injury in dogs, whereas the other strands of the common calcaneal tendon do not seem to have a predisposition to rupture. In order to discover why we investigated the common calcaneal tendons of 63 dogs microscopically and biomechanically. Both the gastrocnemius and superficial digital flexor tendon (SFT) had multiple low vascularized fibrocartilaginous areas within their distal course as opposed to regular parallel fibered areas in the proximal tendon areas. Biomechanical testing revealed that the distal sections in both tendons show a 50% and 70% lower tensile strength (Fmax/kg BW) than the proximal sections (p<0.01), respectively. On the contrary, tensile load (Fmax/mm2) only differed minimally between proximal and distal sections in both tendons (8% and 9%, respectively), whereas the tensile load of the distal gastrocnemius tendon is 35% lower than of the distal superficial flexor tendon (p<0.01). To the authors' knowledge, this is the first study to experimentally show that there are different biomechanical properties within the same tendon. The maximum load to failure is lower in the GT compared to the SFT within the same dog which explains its higher incidence of rupture in the field. The avascular fibrocartilaginous structure in the distal gastrocnemius tendon seems to play a further role in the pathogenesis of spontaneous rupture.
-
References
- 1 Pavaux C, Lignereux Y, Sautet JY. Anatomie comparative et chirurgicale du tendon calcaneen commun des mammiferes domestique. Zbl Vet Med C 1983; 12: 60-69.
- 2 Hermanson J, Evans HE. The muscular system. In: Miller´s anatomy of the dog. Evans HE. (eds.) Philadelphia: Saunders; 1993: 356-359 369–370, 380.
- 3 Kása F, Kása G, Prieur W-D. Traumata von Sehnen und Sehnenscheiden. In: Praktikum der Hundeklinik. Niemand HG, Suter PF. (eds.) Berlin, Hamburg: Parey Verlag; 1994: 198-190.
- 4 Reese S. Untersuchungen am intakten und rupturierten Ligamentum cruciatum craniale des Hundes. Diss med vet Berlin. 1995
- 5 Tillmann B, Koch S. Functional adaption processes of gliding tendons. Sportverletz Sports-chaden 1995; 9: 44-50.
- 6 Benjamin M, Ralphs J. Tendons and ligaments – an overview. Histol Histopathol 1997; 12: 1135-1144.
- 7 Benjamin M, Ralphs J. Fibrocartilage associated with ligaments and tendons. J Anat 1998; 193: 481-494.
- 8 Milz S, Benjamin M, Putz R. Molecular parameters indicating adaption to mechanical stress in fibrous connective tissue. Adv Anat Embryol Cell Biol 2005; 178: 1-71.
- 9 Benjamin M, Toumi H, Ralphs JR. et al. Where tendons and ligaments meet bone: attachment sites (“entheses”) in relation to exercise and/or mechanical load. J Anat 2006; 208: 471-490.
- 10 Peterson W, Hohmann G, Pufe T. et al. Structure of the human tibialis posterior tendon. Arch Orthop Trauma Surg 2004; 124: 237-242
- 11 Spalteholz K. Über das Durchsichtigmachen von menschlichen und tierischen Präparaten und seinen theoretischen Bedingungen. Leipzig: Hirzel Verlag; 1914: 91.
- 12 Riemersma DJ, Schamhardt HC. The Cryo-Jaw, a clamp designed for in vitro rheology studies of horse digital flexor tendons. J Biomechanics 1982; 15: 619-620.
- 13 Shadwick E. Elastic energy storage in tendons: mechanical differences related to function and age. J Appl Physiol 1992; 68: 1033-1040.
- 14 Ploetz E. Umwandelbarkeit von “Gleitsehnen” in “Zugsehnen” und umgekehrt. Anat Anz 1937; 45.
- 15 Ploetz E. Funktioneller Bau und funktionelle Anpassung der Gleitsehnen. Z Orthop 1938; 67: 212-234.
- 16 Rufai A, Ralphs J, Benjamin M. Structure and histopathology of the insertional region of the human Achilles tendon. J Orthop Res 1995; 13: 585-593.
- 17 Evanko SP, Vogel KG. Ultrastructure and proteoglycan composition in the developing fibrocartilaginous region of bovine tendon. Matrix 1990; 10: 420-436.
- 18 Benjamin M, Ralphs J. Functional and developmental anatomy of tendons and ligaments. In: Repetitive motion disorders of the upper extremity. Gordon SL, Blair SJ, Fine LJ. (eds.) Rosemont: Am Acad Orthop Surg 1995; 185-203.
- 19 Zantop T, Petersen W. Biomechanical analysis of the human Achilles tendon. 17. Arbeitstagung der Anatomischen Gesellschaft. Würzburg. 2000
- 20 Meutstege F. The classification of canine Achilles tendon lesions. Vet Comp Orthop Traum. 1993: 53-55.
- 21 Rivers B, Walter P, Kramek B. et al. Sonographic findings in canine common calcaneal tendon injury. Vet Comp Orthop Traumatol 1997; 10: 45-53.
- 22 Kramer M, Schimke E, Gerwing M. et al. Achillessehnenerkrankungen bei Hund und Katze. Tierärztl Praxis K 1998; 26: 238-246.
- 23 Carr A, Norris S. The blood supply of the calcaneal tendon. J Bone Joint Surg 1989; 71: 100-101.
- 24 Stein V, Laprell H, Tinnemeyer S. et al. Quantitative assessment of intravascular volume of the human Achilles tendon. Acta Orthop Scand 2000; 1: 60-63.
- 25 Theobald P, Benjamin M, Nokes L. et al. Review of the vascularisation of the human Achilles tendon. Injury 2005; 36: 1267-1272.
- 26 Klocke J. Quantitative differences in the vascularisation of the Achilles tendon and their relation to ruptures of the Achilles tendon. Orthop Prax 1991; 27: 65-69.
- 27 Orava S, Hurme M, Leppilahti J. Bilateral Achilles tendon rupture: a report on two cases. Scand J Med Sci Sports 1996; 6: 309-312.
- 28 Reineke JD, Kus SP. Achilles mechanism injury in the dog. Comp Cont Educ 1982; 4: 639.
- 29 Haglund P. Beitrag zur Klinik der Achillessehne. Z Orthop Chir 1928; 49: 49.
- 30 Smith T. Fundamental conditions and procedures. In: Comprehensive Textbook of Foot Surgery. Mc Glamry E, Banks A. et al. (eds) Baltimore, Hong Kong, London, Munich, Philadelphia, Sydney, Tokyo: Wiliams & Wiliams; 1992: 440.