Subscribe to RSS
DOI: 10.4103/1793-5482.145572
First report of important causal relationship between the Adamkiewicz artery vasospasm and dorsal root ganglion cell degeneration in spinal subarachnoid hemorrhage: An experimental study using a rabbit model
Background: The blood supply of the lower spinal cord is heavily dependent on the artery of Adamkiewicz. The goal of this study was to elucidate the effects of lumbar subarachnoid hemorrhage (SAH) on the lumbar 4 dorsal root ganglion (L4DRG) cells secondary to Adamkiewicz artery (AKA) vasospasm. Materials and Methods: This study was conducted on 20 rabbits, which were randomly divided into three groups: Spinal SAH (n = 8), serum saline (SS) (SS; n = 6) and control (n = 6) groups. Experimental spinal SAH was performed. After 20 days, volume values of AKA and neuron density of L4DRG were analyzed. Results: The mean alive neuron density of the L4DRG was 15420 ± 1240/mm3 and degenerated neuron density was 1045 ± 260/mm3 in the control group. Whereas, the density of living and degenerated neurons density were 12930 ± 1060/mm3 and 1365 ± 480/mm3 in serum saline (SS), 9845 ± 1028/mm3 and 4560 ± 1340/mm3 in the SAH group. The mean volume of imaginary AKAs was estimated as 1,250 ± 0,310 mm3 in the control group and 1,030 ± 0,240 mm3 in the SF group and 0,910 ± 0,170 mm3 in SAH group. Volume reduction of the AKAs and neuron density L4DRG were significantly different between the SAH and other two groups (P < 0.05). Conclusion: Decreased volume of the lumen of the artery of Adamkiewicz was observed in animals with SAH compared with controls. Increased degeneration the L4 dorsal root ganglion in animals with SAH was also noted. Our findings will aid in the planning of future experimental studies and determining the clinical relevance on such studies.
Publication History
Article published online:
20 September 2022
© 2017. Asian Congress of Neurological Surgeons. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India