Hamostaseologie 2014; 34(01): 63-71
DOI: 10.5482/HAMO-13-09-0050
Review
Schattauer GmbH

Inflammatory mechanisms in atherosclerosis

Inflammatorische Mechanismen in der Atherosklerose
D. Wolf
1   Heart Center Freiburg University, Freiburg, Germany
,
P. Stachon
1   Heart Center Freiburg University, Freiburg, Germany
,
C. Bode
1   Heart Center Freiburg University, Freiburg, Germany
,
A. Zirlik
1   Heart Center Freiburg University, Freiburg, Germany
› Author Affiliations
We thank Jennifer Buchholz for editorial assistance and internal review.
Further Information

Publication History

received: 09 September 2013

accepted in revised form: 05 December 2013

Publication Date:
27 December 2017 (online)

Summary

Throughout the last two decades inflammation has been recognized as the central mechanism underlying atherogenesis. A multitude of basic science work demonstrates the pivotal role of inflammatory processes during every step of atherosclerotic plaque formation: From initiation via propagation to complication.

This review describes some of the key mechanisms involved with a particular focus on the diverse group of inflammatory cells and their subsets that distinctly contribute to atherogenic and anti-atherogenic phenomena. Furthermore, we summarize the controlling action of a tight network of co-stimulatory molecules and cytokines orchestrating the inflammatory and anti-inflammatory effector functions. Finally, the current status of clinical trials evaluating anti-inflammatory/ immune-modulatory treatment strategies is summarized and an outlook for future therapeutic implications is provided.

Zusammenfassung

In den vergangenen zwei Dekaden wurde Inflammation als zentraler pathophysiologischer Mechanismus der Atherosklerose identifiziert. Eine Vielzahl grundlagenorientierter Arbeiten weist inflammatorischen Prozessen eine Schlüsselrolle bei jedem Schritt der atherosklerotischen Plaqueentstehung zu: von der Initiationsphase über die Propagationsphase bis zur Komplikationsphase der Erkrankung. Dieser Übersichtsartikel fasst die Schlüsselmechanismen zusammen mit einem dezidierten Fokus auf die vielseitige Gruppe inflammatorischer Zellen und deren Subtypen mit ihrem unterschiedlichen Beitrag zu atherogenen und antiatherogenen Prozessen. Darüber hinaus beschreiben wir das für die Koordination dieser Prozesse wichtige Zytokinnetzwerk. Abschließend wird der aktuelle Stand großer klinischer Studien zu antiinflammatorischen bzw. immunmodulatorischen Therapiestrategien zusammen gefasst, und ein Ausblick auf potenzielle künftige therapeutische Implikationen gegeben.

 
  • References

  • 1 Lozano R, Naghavi M, Foreman K. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380: 2095-2128.
  • 2 Libby P. Inflammation in atherosclerosis. Nature 2002; 420: 868-874.
  • 3 Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993; 259: 87-91.
  • 4 Rocha VZ, Libby P. The multiple facets of the fat tissue. Thyroid 2008; 18: 175-183.
  • 5 Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol 2011; 12: 204-212.
  • 6 Aronson D, Rayfield EJ. How hyperglycemia promotes atherosclerosis: molecular mechanisms. Cardiovasc Diabetol 2002; 01: 1 Epub 2002/07/18..
  • 7 Hagiwara E, Takahashi KI, Okubo T. et al. Cigarette smoking depletes cells spontaneously secreting Th(1) cytokines in the human airway. Cytokine 2001; 14: 121-126.
  • 8 Madretsma S, Wolters LM, van Dijk JP. et al. Invivo effect of nicotine on cytokine production by human non-adherent mononuclear cells. Eur J Gastroenterol Hepatol 1996; 08: 1017-1020.
  • 9 Tabas I, Williams KJ, Boren J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 2007; 116: 1832-1844.
  • 10 Flood C, Gustafsson M, Pitas RE. et al. Molecular mechanism for changes in proteoglycan binding on compositional changes of the core and the surface of low-density lipoprotein-containing human apolipoprotein B100. Arterioscler Thromb Vasc Biol 2004; 24: 564-570.
  • 11 Collins T, Cybulsky MI. NF-kappaB: pivotal mediator or innocent bystander in atherogenesis?. J Clin Invest 2001; 107: 255-264.
  • 12 Cybulsky MI, Gimbrone Jr MA. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 1991; 251: 788-791.
  • 13 Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 2007; 07: 678-689.
  • 14 McEver RP, Cummings RD. Role of PSGL-1 binding to selectins in leukocyte recruitment. J Clin Invest 1997; 100 (11 Suppl): S97-S103.
  • 15 Von Hundelshausen P, Koenen RR, Sack M. et al. Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium. Blood 2005; 105: 924-930.
  • 16 Chan JR, Hyduk SJ, Cybulsky MI. Chemoattractants induce a rapid and transient upregulation of monocyte alpha4 integrin affinity for vascular cell adhesion molecule 1 which mediates arrest: an early step in the process of emigration. J Exp Med 2001; 193: 1149-1158.
  • 17 Sigal A, Bleijs DA, Grabovsky V. et al. The LFA-1 integrin supports rolling adhesions on ICAM-1 under physiological shear flow in a permissive cellular environment. J Immunol 2000; 165: 442-452.
  • 18 Smith JD, Trogan E, Ginsberg M. et al. Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc Natl Acad Sci USA 1995; 92: 8264-8268.
  • 19 Greaves DR, Gordon S. The macrophage scavenger receptor at 30 years of age: current knowledge and future challenges. J Lipid Res 2009; 50 Suppl: S282-S286.
  • 20 Mallat Z, Tedgui A. Cytokines as regulators of atherosclerosis in murine models. Curr Drug Targets 2007; 08: 1264-1272.
  • 21 Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 2006; 06 (07) 508-19. Epub 2006/06/17..
  • 22 Frostegard J, Ulfgren AK, Nyberg P. et al. Cytokine expression in advanced human atherosclerotic plaques: dominance of pro-inflammatory (Th1) and macrophage-stimulating cytokines. Atherosclerosis 1999; 145: 33-43.
  • 23 Dollery CM, Libby P. Atherosclerosis and proteinase activation. Cardiovasc Res 2006; 69: 625-635.
  • 24 Mach F, Schonbeck U, Bonnefoy JY. et al. Activation of monocyte/macrophage functions related to acute atheroma complication by ligation of CD40: induction of collagenase, stromelysin, and tissue factor. Circulation 1997; 96: 396-399.
  • 25 Sukhova GK, Schonbeck U, Rabkin E. et al. Evidence for increased collagenolysis by interstitial collagenases-1 and –3 in vulnerable human atheromatous plaques. Circulation 1999; 99: 2503-2509.
  • 26 Swirski FK, Pittet MJ, Kircher MF. et al. Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease. Proc Natl Acad Sci USA 2006; 103: 10340-10345.
  • 27 Auffray C, Fogg DK, Narni-Mancinelli E. et al. CX3CR1+ CD115+ CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation. J Exp Med 2009; 206: 595-606.
  • 28 Swirski FK, Libby P, Aikawa E. et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest 2007; 117: 195-205.
  • 29 Robbins CS, Chudnovskiy A, Rauch PJ. et al. Extramedullary hematopoiesis generates Ly-6C(high) monocytes that infiltrate atherosclerotic lesions. Circulation 2012; 125: 364-374.
  • 30 Zirlik A, Maier C, Gerdes N. et al. CD40 ligand mediates inflammation independently of CD40 by interaction with Mac-1. Circulation 2007; 115: 1571-1580.
  • 31 Wolf D, Hohmann JD, Wiedemann A. et al. Binding of CD40L to Mac-1’s I-domain involves the EQLKKSKTL motif and mediates leukocyte recruitment and atherosclerosis--but does not affect immunity and thrombosis in mice. Circ Res 2011; 109: 1269-1279.
  • 32 Galkina E, Kadl A, Sanders J. ET AL. Lymphocyte recruitment into the aortic wall before and during development of atherosclerosis is partially L-selectin dependent. J Exp Med 2006; 203: 1273-1282.
  • 33 Robbins CS, Hilgendorf I, Weber GF. et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat med 2013; 09: 1166-1172.
  • 34 Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell 2011; 145: 341-355.
  • 35 Ley K, Miller YI, Hedrick CC. Monocyte and macrophage dynamics during atherogenesis. Arterioscler Thromb Vasc Biol 2011; 31: 1506-1516.
  • 36 Leitinger N, Schulman IG. Phenotypic polarization of macrophages in atherosclerosis. Arterioscler Thromb Vasc Biol 2013; 33: 1120-1126.
  • 37 Stoneman V, Braganza D, Figg N. et al. Monocyte/ macrophage suppression in CD11b diphtheria toxin receptor transgenic mice differentially affects atherogenesis and established plaques. Circ Res 2007; 100: 884-93.
  • 38 Yvan-Charvet L, Ranalletta M, Wang N. et al. Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J Clin Invest 2007; 117: 3900-3908.
  • 39 Galis ZS, Sukhova GK, Lark MW, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 1994; 94: 2493-2503.
  • 40 Robertson AK, Hansson GK. T cells in atherogenesis: for better or for worse?. Arterioscler Thromb Vasc Biol 2006; 26: 2421-232.
  • 41 Buono C, Binder CJ, Stavrakis G. et al. T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proc Natl Acad Sci USA 2005; 102: 1596-1601.
  • 42 Buono C, Come CE, Stavrakis G. et al. Influence of interferon-gamma on the extent and phenotype of diet-induced atherosclerosis in the LDLR-deficient mouse. Arterioscler Thromb Vasc Biol 2003; 23: 454-460.
  • 43 Gupta S, Pablo AM, Jiang X. et al. IFN-gamma potentiates atherosclerosis in ApoE knock-out mice. J Clin Invest 1997; 99: 2752-2761.
  • 44 Zhou X, Paulsson G, Stemme S, Hansson GK. Hypercholesterolemia is associated with a T helper (Th) 1/Th2 switch of the autoimmune response in atherosclerotic apo E-knockout mice. J Clin Invest 1998; 101: 1717-1725.
  • 45 Davenport P, Tipping PG. The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. Am J Pathol 2003; 163: 1117-1125.
  • 46 King VL, Cassis LA, Daugherty A. Interleukin-4 does not influence development of hypercholesterolemia or angiotensin II-induced atherosclerotic lesions in mice. Am J Pathol 2007; 171: 2040-2047.
  • 47 De Boer OJ, van der Meer JJ, Teeling P. et al. Differential expression of interleukin-17 family cytokines in intact and complicated human atherosclerotic plaques. J Pathol ...... ((JAHR; AUTOR BITTE ERGÄNZEN)) 220: 499-508.
  • 48 Erbel C, Chen L, Bea F. et al. Inhibition of IL-17A attenuates atherosclerotic lesion development in apoE-deficient mice. J Immunol 2009; 183: 8167-8175.
  • 49 Gao Q, Jiang Y, Ma T. et al. A critical function of Th17 proinflammatory cells in the development of atherosclerotic plaque in mice. J Immunol 2010; 185: 5820-5827.
  • 50 Cheng X, Taleb S, Wang J. et al. Inhibition of IL-17A in atherosclerosis. Atherosclerosis 2010; 215: 471-474.
  • 51 Danzaki K, Matsui Y, Ikesue M. t al. Interleukin-17A deficiency accelerates unstable atherosclerotic plaque formation in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2012; 32: 273-280.
  • 52 Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299: 1057-1061.
  • 53 Mallat Z, Besnard S, Duriez M. et al. Protective role of interleukin-10 in atherosclerosis. Circ Res 1999; 85: e17-e24.
  • 54 Robertson AK, Rudling M, Zhou X. et al. Disruption of TGF-beta signaling in T cells accelerates atherosclerosis. J Clin Invest 2003; 112: 1342-1350.
  • 55 Klingenberg R, Gerdes N, Badeau RM. et al. Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis. J Clin Invest 123: 1323-1334.
  • 56 Lichtman AH, Binder CJ, Tsimikas S, Witztum JL. Adaptive immunity in atherogenesis: new insights and therapeutic approaches. J Clin Invest 2013; 123: 27-36.
  • 57 Hermansson A, Ketelhuth DF, Strodthoff D. et al. Inhibition of T cell response to native low-density lipoprotein reduces atherosclerosis. J Exp Med 2010; 207: 1081-1093.
  • 58 Ketelhuth DF, Hansson GK. Cellular immunity, low-density lipoprotein and atherosclerosis: break of tolerance in the artery wall. Thromb Haemost 106: 779-786.
  • 59 Stemme S, Faber B, Holm J. et al. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc Natl Acad Sci USA 1995; 92: 3893-3897.
  • 60 Koltsova EK, Garcia Z, Chodaczek G. et al. Dynamic T cell-APC interactions sustain chronic inflammation in atherosclerosis. J Clin Invest 2012; 122: 3114-3126.
  • 61 Caligiuri G, Nicoletti A, Poirier B, Hansson GK. Protective immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J Clin Invest 2002; 109: 745-753.
  • 62 Major AS, Fazio S, Linton MF. B-lymphocyte deficiency increases atherosclerosis in LDL receptornull mice. Arterioscler Thromb Vasc Biol 2002; 22: 1892-1898.
  • 63 Doran AC, Lipinski MJ, Oldham SN. et al. B-cell aortic homing and atheroprotection depend on Id3. Circ Res 2012; 110: e1-e12.
  • 64 Lewis MJ, Malik TH, Ehrenstein MR. et al. Immunoglobulin M is required for protection against atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 2009; 120: 417-426.
  • 65 Ait-Oufella H, Herbin O, Bouaziz JD. et al. B cell depletion reduces the development of atherosclerosis in mice. J Exp Med 2010; 207: 1579-1587.
  • 66 Kyaw T, Tay C, Khan A. et al. Conventional B2 B cell depletion ameliorates whereas its adoptive transfer aggravates atherosclerosis. J Immunol 2010; 185: 4410-4419.
  • 67 Kyaw T, Tay C, Hosseini H. et al. Depletion of B2 but not B1a B cells in BAFF receptor-deficient ApoE mice attenuates atherosclerosis by potently ameliorating arterial inflammation. PloS one 2012; 07: e29371.
  • 68 Sage AP, Tsiantoulas D, Baker L. et al. BAFF receptor deficiency reduces the development of atherosclerosis in mice--brief report. Arterioscler Thromb Vasc Biol 2012; 32: 1573-1576.
  • 69 Tumang JR, Hastings WD, Bai C, Rothstein TL. Peritoneal and splenic B-1 cells are separable by phenotypic, functional, and transcriptomic characteristics. Eur J Immunol 2004; 34: 2158-2167.
  • 70 Binder CJ, Horkko S, Dewan A. et al. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nature Med 2003; 09: 736-743.
  • 71 Rauch PJ, Chudnovskiy A, Robbins CS. et al. Innate response activator B cells protect against microbial sepsis. Science 2012; 335: 597-601.
  • 72 Hilgendorf I, Eisele S, Remer I. et al. The oral spleen tyrosine kinase inhibitor fostamatinib attenuates inflammation and atherogenesis in lowdensity lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 2011; 31: 1991-1999.
  • 73 Koltsova EK, Ley K. How dendritic cells shape atherosclerosis. Trends Immunol 2011; 32: 540-547.
  • 74 Millonig G, Niederegger H, Rabl W. et al. Network of vascular-associated dendritic cells in intima of healthy young individuals. Arterioscler Thromb Vasc Biol 2001; 21: 503-508.
  • 75 Jongstra-Bilen J, Haidari M, Zhu SN. et al. Lowgrade chronic inflammation in regions of the normal mouse arterial intima predisposed to atherosclerosis. J Exp Med 2006; 203: 2073-2083.
  • 76 Yilmaz A, Lochno M, Traeg F. et al. Emergence of dendritic cells in rupture-prone regions of vulnerable carotid plaques. Atherosclerosis 2004; 176: 101-110.
  • 77 Liu P, Yu YR, Spencer JA, Johnson AE. et al. CX3CR1 deficiency impairs dendritic cell accumulation in arterial intima and reduces atherosclerotic burden. Arterioscler Thromb Vasc Biol 2008; 28: 243-250.
  • 78 Alderman CJ, Bunyard PR, Chain BM. et al. Effects of oxidised low density lipoprotein on dendritic cells: a possible immunoregulatory component of the atherogenic micro-environment?. Cardiovasc Res 2002; 55: 806-819.
  • 79 Kostis JB, Turkevich D, Sharp J. Association between leukocyte count and the presence and extent of coronary atherosclerosis as determined by coronary arteriography. Am J Cardiol 1984; 53: 997-999.
  • 80 Kawaguchi H, Mori T, Kawano T. et al. Band neutrophil count and the presence and severity of coronary atherosclerosis. Am Heart J 1996; 132: 9-12.
  • 81 Zhang R, Brennan ML, Fu X. et al. Association between myeloperoxidase levels and risk of coronary artery disease. JAMA 2001; 286: 2136-2142.
  • 82 Drechsler M, Megens RT, van Zandvoort M. et al. Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation 2010; 122: 1837-1845.
  • 83 Naruko T, Ueda M, Haze K. et al. Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation 2002; 106: 2894-2900.
  • 84 Zernecke A, Bot I, Djalali-Talab Y. et al. Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis. Circ Res 2008; 102: 209-217.
  • 85 Doring Y, Drechsler M, Wantha S. et al. Lack of neutrophil-derived CRAMP reduces atherosclerosis in mice. Circ Res 2012; 110: 1052-1056.
  • 86 Wantha S, Alard JE, Megens RT. et al. Neutrophilderived cathelicidin promotes adhesion of classical monocytes. Circ Res 2013; 112: 792-801.
  • 87 Kovanen PT, Kaartinen M, Paavonen T. Infiltrates of activated mast cells at the site of coronary atheromatous erosion or rupture in myocardial infarction. Circulation 1995; 92: 1084-1088.
  • 88 Kovanen PT. Role of mast cells in atherosclerosis. Chem Immunol 1995; 62: 132-170.
  • 89 Bot I, de Jager SC, Zernecke A. et al. Perivascular mast cells promote atherogenesis and induce plaque destabilization in apolipoprotein E-deficient mice. Circulation 2007; 115: 2516-2525.
  • 90 Sun J, Sukhova GK, Wolters PJ. et al. Mast cells promote atherosclerosis by releasing proinflammatory cytokines. Nat Med 2007; 13: 719-724.
  • 91 Binder CJ, Witztum JL. Is atherosclerosis an allergic disease?. Circ Res 2011; 109: 1103-1104.
  • 92 Wang J, Cheng X, Xiang MX. et al. IgE stimulates human and mouse arterial cell apoptosis and cytokine expression and promotes atherogenesis in Apoe-/mice. J Clin Invest 2011; 121: 3564-3577.
  • 93 Gawaz M, Langer H, May AE. Platelets in inflammation and atherogenesis. J Clin Invest 2005; 115: 3378-3384.
  • 94 Burger PC, Wagner DD. Platelet P-selectin facilitates atherosclerotic lesion development. Blood 2003; 101: 2661-2666.
  • 95 Huo Y, Schober A, Forlow SB. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med 2003; 09: 61-67.
  • 96 Duerschmied D, Suidan GL, Demers M. et al. Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice. Blood 2013; 121: 1008-1015.
  • 97 Gleissner CA, von Hundelshausen P, Ley K. Platelet chemokines in vascular disease. Arterioscler Thromb Vasc Biol 2008; 28: 1920-1927.
  • 98 Gear AR, Suttitanamongkol S, Viisoreanu D. et al. Adenosine diphosphate strongly potentiates the ability of the chemokines MDC, TARC, and SDF-1 to stimulate platelet function. Blood 2001; 97: 937-945.
  • 99 Schober A, Manka D, von Hundelshausen P. et al. Deposition of platelet RANTES triggering monocyte recruitment requires P-selectin and is involved in neointima formation after arterial injury. Circulation 2002; 106: 1523-1529.
  • 100 Sachais BS, Turrentine T, Dawicki JMMcKenna. et al. Elimination of platelet factor 4 (PF4) from platelets reduces atherosclerosis in C57Bl/6 and apoE-/-mice. Thromb Haemost 2007; 98: 1108-1113.
  • 101 Boisvert WA, Rose DM, Johnson KA. et al. Upregulated expression of the CXCR2 ligand KC/ GRO-alpha in atherosclerotic lesions plays a central role in macrophage accumulation and lesion progression. Am J Pathol 2006; 168: 1385-1395.
  • 102 Koenen RR, von Hundelshausen P, Nesmelova IV. et al. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat Med 2009; 15: 97-103.
  • 103 Veillard NR, Kwak B, Pelli G. et al. Antagonism of RANTES receptors reduces atherosclerotic plaque formation in mice. Circ Res 2004; 94: 253-261.
  • 104 Gerdes N, Zirlik A. Co-stimulatory molecules in and beyond co-stimulation - tipping the balance in atherosclerosis?. Thromb Haemost 2011; 106: 804-813.
  • 105 Buono C, Pang H, Uchida Y. et al. B7–1/B7–2 costimulation regulates plaque antigen-specific T-cell responses and atherogenesis in low-density lipoprotein receptor-deficient mice. Circulation 2004; 109: 2009-2015.
  • 106 Afek A, Harats D, Roth A. et al. A functional role for inducible costimulator (ICOS) in atherosclerosis. Atherosclerosis 2005; 183: 57-63.
  • 107 Gotsman I, Grabie N, Gupta R. et al. Impaired regulatory T-cell response and enhanced atherosclerosis in the absence of inducible costimulatory molecule. Circulation 2006; 114: 2047-2055.
  • 108 Gotsman I, Grabie N, Dacosta R. et al. Proatherogenic immune responses are regulated by the PD1/PD-L pathway in mice. J Clin Invest 2007; 117: 2974-2982.
  • 109 Bu DX, Tarrio M, Maganto-Garcia E. et al. Impairment of the programmed cell death-1 pathway increases atherosclerotic lesion development and inflammation. Arterioscler Thromb Vasc Biol 2011; 31: 1100-1107.
  • 110 Schonbeck U, Libby P. The CD40/CD154 receptor/ligand dyad. Cell Mol Life Sci 2001; 58: 4-43.
  • 111 Bavendiek U, Zirlik A, LaClair S. et al. Atherogenesis in mice does not require CD40 ligand from bone marrow-derived cells. Arterioscler Thromb Vasc Biol 2005; 25: 1244-1249.
  • 112 Lutgens E, Cleutjens KB, Heeneman S. et al. Both early and delayed anti-CD40L antibody treatment induces a stable plaque phenotype. Proc Natl Acad Sci USA 2000; 97: 7464-7469.
  • 113 Lutgens E, Gorelik L, Daemen MJ, de Muinck ED, Grewal IS, Koteliansky VE. et al. Requirement for CD154 in the progression of atherosclerosis. Nature medicine 1999; 05: 1313-1316.
  • 114 Mach F, Schonbeck U, Sukhova GK. et al. Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 1998; 394: 200-203.
  • 115 Schonbeck U, Sukhova GK, Shimizu K. et al. Inhibition of CD40 signaling limits evolution of established atherosclerosis in mice. Proc Natl Acad Sci USA 2000; 97: 7458-7463.
  • 116 Smook ML, Heeringa P, Damoiseaux JG. et al. Leukocyte CD40L deficiency affects the CD25(+) CD4 T cell population but does not affect atherosclerosis. Atherosclerosis 2005; 183: 275-282.
  • 117 Missiou A, Wolf D, Platzer I. et al. CD40L induces inflammation and adipogenesis in adipose cells--a potential link between metabolic and cardiovascular disease. Thromb Haemost 2010; 103: 788-796.
  • 118 Poggi M, Engel D, Christ A. et al. CD40L deficiency ameliorates adipose tissue inflammation and metabolic manifestations of obesity in mice. Arterioscler Thromb Vasc Biol 2011; 10: 2251-2260.
  • 119 Poggi M, Jager J, Paulmyer-Lacroix O. et al. The inflammatory receptor CD40 is expressed on human adipocytes: contribution to crosstalk between lymphocytes and adipocytes. Diabetologia 2009; 52: 1152-1163.
  • 120 Wolf D, Jehle F, Ortiz ARodriguez. et al. CD40L deficiency attenuates diet-induced adipose tissue inflammation by impairing immune cell accumulation and production of pathogenic IgG-antibodies. PloS one 2012; 07: e33026.
  • 121 Ha H, Han D, Choi Y. TRAF-mediated TNFR-family signaling. Curr Protoc Immunol. 2009 Chapter 11: Unit11 9D. doi: 10.1002/0471142735.im1109ds87.
  • 122 Missiou A, Kostlin N, Varo N, Rudolf P, Aichele P, Ernst S. et al. Tumor necrosis factor receptor-associated factor 1 (TRAF1) deficiency attenuates atherosclerosis in mice by impairing monocyte recruitment to the vessel wall. Circulation 2010; 121: 2033-2044.
  • 123 Missiou A, Rudolf P, Stachon P. et al. TRAF5 deficiency accelerates atherogenesis in mice by increasing inflammatory cell recruitment and foam cell formation. Circ Res 2010; 107: 757-766.
  • 124 Lutgens E, Lievens D, Beckers L. et al. Deficient CD40-TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an antiinflammatory profile. J Exp Med 2010; 207: 391-404.
  • 125 Stachon P, Missiou A, Walter C. et al. Tumor necrosis factor receptor associated factor 6 is not required for atherogenesis in mice and does not associate with atherosclerosis in humans. PloS one 2010; 05: e11589.
  • 126 Zirlik A, Bavendiek U, Libby P. et al. TRAF-1, -2, -3, -5, and -6 are induced in atherosclerotic plaques and differentially mediate proinflammatory functions of CD40L in endothelial cells. Arterioscler Thromb Vasc Biol 2007; 27: 1101-1107.
  • 127 Seok J, Warren HS, Cuenca AG. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA 2013; 110: 3507-3512.
  • 128 Ridker PM, Danielson E, Fonseca FA. et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med 2008; 359: 2195-2207.
  • 129 Ridker PM, Thuren T, Zalewski A, Libby P. Interleukin-1beta inhibition and the prevention of recurrent cardiovascular events. Am Heart J 2011; 162: 597-605.
  • 130 Everett BM, Pradhan AD, Solomon DH. et al. Rationale and design of the Cardiovascular Inflammation Reduction Trial. Am Heart J 2013; 166: 199-207.