Hamostaseologie 2015; 35(02): 152-164
DOI: 10.5482/HAMO-14-11-0057
Review
Schattauer GmbH

Hämostaseologische Aspekte in der Onkologie

Haemostatic aspects in clinical oncology
F. Langer
1   II. Medizinische Klinik und Poliklinik, Hubertus Wald Tumorzentrum – Universitäres Cancer Center Hamburg, Universitätsklinikum Hamburg-Eppendorf, Germany
› Author Affiliations
Further Information

Publication History

received: 04 November 2014

accepted in revised form: 09 December 2014

Publication Date:
28 December 2017 (online)

Zusammenfassung

Der klinische Zusammenhang zwischen Tumor und Thrombose ist spätestens seit den Beobachtungen von Armand Trousseau (1865) bekannt. Die Aktivierung der Hämostase und Fibrinolyse spielt nicht nur in der Ätiologie des Trousseau-Syndroms eine wichtige Rolle, sondern fördert auch direkt die Progression maligner Erkrankungen. Insbesondere der Gewebefaktor (Tissue-Faktor) ist für das primäre Tumorwachstum und die hämatogene Metastasierung von Bedeutung. Dabei unterliegen die bei Krebspatienten beobachteten Gerinnungsstörungen zumindest teilweise der Kontrolle durch definierte (in)aktivierende Mutationen von Tumorsuppressor- oder Onkogenen.

Während die langfristige Antikoagulation mit niedermolekularem Heparin (NMH) etablierte Standardtherapie der tumorassoziierten venösen Thromboembolie (VTE) ist, müssen die medikamentöse VTE-Prophylaxe bei ambulanten onkologischen Patienten und das Management von komplexen Hämostase- störungen individuell und risikoadaptiert erfolgen. (Tier)experimentelle Studien legen zudem nahe, dass NMH in der Therapie von Krebspatienten effektiv sein könnte. Dieser Zusatznutzen konnte jedoch bisher nicht zweifelsfrei durch randomisierte Studien belegt werden.

Summary

The clinical link between cancer and thrombosis has been recognized by Armand Trousseau in 1865. It has become clear that activation of coagulation and fibrinolysis plays an important role not only in the pathophysiology of Trousseau’s syndrome, but also in the progression of solid malignancies. In particular, tissue factor is critical for both primary tumour growth and haematogenous metastasis. Haemostatic perturbations in cancer patients are, at least in part, controlled by defined genetic events in molecular tumourigenesis, including activating and inactivating mutations of oncogenes and tumour suppressor genes, respectively.

While long-term treatment with low-molecular-weight heparin (LMWH) is considered standard therapy for established venous thromboembolism (VTE), pharmacological VTE prophylaxis in ambulatory cancer patients and the management of complex systemic coagulopathies remain a challenge and have to be decided on an individual basis and in a risk-adapted manner. Experimental and preclinical studies further suggest that LMWH may be beneficial in cancer therapy, but this innovative concept has not yet been proven beyond doubt in rigorously designed clinical trials.

 
  • Literatur

  • 1 Trousseau A. Phlegmasia alba dolens. Clinique Medicale de l’Hotel-Dieu de Paris 1865; 03: 654-712.
  • 2 Buller HR, van Doormaal FF, van Sluis GL, Kamphuisen PW. Cancer and thrombosis: from molecular mechanisms to clinical presentations. J Thromb Haemost 2007; 05 (Suppl. 01) 246-254.
  • 3 Varki A. Trousseau’s syndrome: multiple definitions and multiple mechanisms. Blood 2007; 110: 1723-1729.
  • 4 Falanga A. Biological and clinical aspects of anticancer effects of antithrombotics. Pathophysiol Haemost Thromb 2003–2004 33: 389-392.
  • 5 Langer F, Bokemeyer C. Crosstalk between cancer and haemostasis. Implications for cancer biology and cancer-associated thrombosis with focus on tissue factor. Hämostaseologie 2012; 32: 95-104.
  • 6 Moore RA, Adel N, Riedel E. et al. High incidence of thromboembolic events in patients treated with cisplatin-based chemotherapy: a large retrospective analysis. J Clin Oncol 2011; 29: 3466-3473.
  • 7 Seng S, Liu Z, Chiu SK. et al. Risk of venous thromboembolism in patients with cancer treated with Cisplatin: a systematic review and meta-analysis. J Clin Oncol 2012; 30: 4416-4426.
  • 8 Lechner D, Kollars M, Gleiss A. et al. Chemotherapy-induced thrombin generation via procoagulant endothelial microparticles is independent of tissue factor activity. J Thromb Haemost 2007; 05: 2445-2452.
  • 9 Seitz R, Rappe N, Kraus M. et al. Activation of coagulation and fibrinolysis in patients with lung cancer: relation to tumour stage and prognosis. Blood Coagul Fibrinolysis 1993; 04: 249-254.
  • 10 Oya M, Akiyama Y, Okuyama T, Ishikawa H. High preoperative plasma D-dimer level is associated with advanced tumor stage and short survival after curative resection in patients with colorectal cancer. Jpn J Clin Oncol 2001; 31: 388-394.
  • 11 Dirix LY, Salgado R, Weytjens R. et al. Plasma fibrin D-dimer levels correlate with tumor volume, progression rate and survival in patients with metastatic breast cancer. Br J Cancer 2002; 86: 389-395.
  • 12 Buccheri G, Torchio P, Ferrigno D. Plasma levels of D-dimer in lung carcinoma: clinical and prognostic significance. Cancer 2003; 97: 3044-3052.
  • 13 Ay C, Dunkler D, Pirker R. et al. High D-dimer levels are associated with poor prognosis in cancer patients. Haematologica 2012; 97: 1158-1164.
  • 14 Wang JG, Geddings JE, Aleman MM. et al. Tumorderived tissue factor activates coagulation and enhances thrombosis in a mouse xenograft model of human pancreatic cancer. Blood 2012; 119: 5543-5552.
  • 15 Khorana AA, Ahrendt SA, Ryan CK. et al. Tissue factor expression, angiogenesis, and thrombosis in pancreatic cancer. Clin Cancer Res 2007; 13: 2870-2875.
  • 16 Uno K, Homma S, Satoh T. et al. Tissue factor expression as a possible determinant of thromboembolism in ovarian cancer. Br J Cancer 2007; 96: 290-295.
  • 17 Yu J, May L, Milsom C. et al. Contribution of hostderived tissue factor to tumor neovascularization. Arterioscler Thromb Vasc Biol 2008; 28: 1975-1981.
  • 18 Davila M, Amirkhosravi A, Coll E. et al. Tissue factor-bearing microparticles derived from tumor cells: impact on coagulation activation. J Thromb Haemost 2008; 06: 1517-1524.
  • 19 Thomas GM, Panicot-Dubois L, Lacroix R. et al. Cancer cell-derived microparticles bearing P-selectin glycoprotein ligand 1 accelerate thrombus formation in vivo. J Exp Med 2009; 206: 1913-1927.
  • 20 Geddings JE, Mackman N. Tumor-derived tissue factor-positive microparticles and venous thrombosis in cancer patients. Blood 2013; 122: 1873-1880.
  • 21 Bogdanov VY, Balasubramanian V, Hathcock J. et al. Alternatively spliced human tissue factor: a circulating, soluble, thrombogenic protein. Nat Med 2003; 09: 458-462.
  • 22 Van den Berg YW, Versteeg HH. Alternatively spliced tissue factor. A crippled protein in coagulation or a key player in non-haemostatic processes?. Hämostaseologie 2010; 30: 144-149.
  • 23 Kocatürk B, Versteeg HH. Tissue factor isoforms in cancer and coagulation: may the best isoform win. Thromb Res 2012; 129: S69-S75.
  • 24 Rak J, Yu JL, Luyendyk J, Mackman N. Oncogenes, trousseau syndrome, and cancer-related changes in the coagulome of mice and humans. Cancer Res 2006; 66: 10643-10646.
  • 25 Borsig L, Wong R, Feramisco J. et al. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci USA 2001; 98: 3352-3357.
  • 26 Wahrenbrock M, Borsig L, Le D. et al. Selectinmucin interactions as a probable molecular explanation for the association of Trousseau syndrome with mucinous adenocarcinomas. J Clin Invest 2003; 112: 853-862.
  • 27 Falanga A, Alessio MG, Donati MB, Barbui T. A new procoagulant in acute leukemia. Blood 1988; 71: 870-875.
  • 28 Kaźmierczak M, Lewandowski K, Wojtukiewicz MZ. et al. Cancer procoagulant in patients with adenocarcinomas. Blood Coagul Fibrinolysis 2005; 16: 543-547.
  • 29 Svendsen E, Karwinski B. Prevalence of pulmonary embolism at necropsy in patients with cancer. J Clin Pathol 1989; 42: 805-809.
  • 30 Khorana AA, Dalal M, Lin J, Connolly GC. Incidence and predictors of venous thromboembolism among ambulatory high-risk cancer patients undergoing chemotherapy in the United States. Cancer 2013; 119: 648-655.
  • 31 Goldin-Lang P, Tran QV, Fichtner I. et al. Tissue factor expression pattern in human non-small cell lung cancer tissues indicate increased blood thrombogenicity and tumor metastasis. Oncol Rep 2008; 20: 123-128.
  • 32 Thaler J, Preusser M, Ay C. et al. Intratumoral tissue factor expression and risk of venous thromboembolism in brain tumor patients. Thromb Res 2013; 131: 162-165.
  • 33 Thaler J, Ay C, Mackman N. et al. Microparticle-associated tissue factor activity in patients with pancreatic cancer: correlation with clinicopathological features. Eur J Clin Invest 2013; 43: 277-285.
  • 34 Dickmann B, Ahlbrecht J, Ay C. et al. Regional lymph node metastases are a strong risk factor for venous thromboembolism: results from the Vienna Cancer and Thrombosis Study. Haematologica 2013; 98: 1309-1314.
  • 35 Ahlbrecht J, Dickmann B, Ay C. et al. Tumor grade is associated with venous thromboembolism in patients with cancer: results from the Vienna Cancer and Thrombosis Study. J Clin Oncol 2012; 30: 3870-3875.
  • 36 Streiff MB. Association between cancer types, cancer treatments, and venous thromboembolism in medical oncology patients. Clin Adv Hematol Oncol 2013; 11: 349-357.
  • 37 Mackman N. New insights into the mechanisms of venous thrombosis. J Clin Invest 2012; 122: 2331-2336.
  • 38 Fuchs TA, Brill A, Wagner DD. Neutrophil extracellular trap impact on deep vein thrombosis. Arterioscler Thromb Vasc Biol 2012; 32: 1777-1783.
  • 39 Martinod K, Wagner DD. Thrombosis: tangled up in NETs. Blood 2014; 123: 2768-2776.
  • 40 Von Brühl ML, Stark K, Steinhart A. et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 2012; 209: 819-835.
  • 41 Demers M, Krause DS, Schatzberg D. et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci USA 2012; 109: 13076-13081.
  • 42 Demers M, Wagner DD. NETosis: a new factor in tumor progression and cancer-associated thrombosis. Semin Thromb Hemost 2014; 40: 277-283.
  • 43 Fuchs TA, Kremer JAHovinga, Schatzberg D. et al. Circulating DNA and myeloperoxidase indicate disease activity in patients with thrombotic microangiopathies. Blood 2012; 120: 1157-1164.
  • 44 Van Montfoort ML, Stephan F, Lauw MN. et al. Circulating nucleosomes and neutrophil activation as risk factors for deep vein thrombosis. Arterioscler Thromb Vasc Biol 2013; 33: 147-151.
  • 45 Lee AY, Levine MN. Venous thromboembolism and cancer: risks and outcomes. Circulation 2003; 107 (23 Suppl 1): I17-I21.
  • 46 Lee AY. Management of thrombosis in cancer: primary prevention and secondary prophylaxis. Br J Haematol 2005; 128: 291-302.
  • 47 Prandoni P, Lensing AW, Piccioli A. et al. Recurrent venous thromboembolism and bleeding complications during anticoagulant treatment in patients with cancer and venous thrombosis. Blood 2002; 100: 3484-3488.
  • 48 Andtbacka RH, Babiera G, Singletary SE. et al. Incidence and prevention of venous thromboembolism in patients undergoing breast cancer surgery and treated according to clinical pathways. Ann Surg 2006; 243: 96-101.
  • 49 Satoh T, Oki A, Uno K. et al. High incidence of silent venous thromboembolism before treatment in ovarian cancer. Br J Cancer 2007; 97: 1053-1057.
  • 50 Pabinger I, Alt-Epping B, Demarmels FBiasutti. et al. Venous thrombembolism in tumour patients. Hämostaseologie 2011; 31: 281-290.
  • 51 Lyman GH, Khorana AA, Kuderer NM. et al. American Society of Clinical Oncology Clinical Practice. Venous thromboembolism prophylaxis and treatment in patients with cancer. J Clin Oncol 2013; 31: 2189-2204.
  • 52 Carrier M, Khorana AA, Moretto P. et al. Lack of evidence to support thromboprophylaxis in hospitalized medical patients with cancer. Am J Med 2014; 127: 82-86.
  • 53 Agnelli G, Gussoni G, Bianchini C. et al. PROTECHT Investigators. Nadroparin for the prevention of thromboembolic events in ambulatory patients with metastatic or locally advanced solid cancer receiving chemotherapy: a randomised, placebo-controlled, double-blind study. Lancet Oncol 2009; 10: 943-949.
  • 54 Agnelli G, George DJ, Kakkar AK. et al. SAVEONCO Investigators. Semuloparin for thromboprophylaxis in patients receiving chemotherapy for cancer. N Engl J Med 2012; 366: 601-609.
  • 55 Khorana AA, Kuderer NM, Culakova E. et al. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood 2008; 111: 4902-4907.
  • 56 Ay C, Dunkler D, Marosi C. et al. Prediction of venous thromboembolism in cancer patients. Blood 2010; 116: 5377-5382.
  • 57 Zwicker JI, Liebman HA, Bauer KA. et al. Prediction and prevention of thromboembolic events with enoxaparin in cancer patients with elevated tissue factor-bearing microparticles: a randomized-controlled phase II trial. Br J Haematol 2013; 160: 530-537.
  • 58 Maraveyas A, Waters J, Roy R. et al. Gemcitabine versus gemcitabine plus dalteparin thromboprophylaxis in pancreatic cancer. Eur J Cancer 2012; 48: 1283-1292.
  • 59 Riess H, Pelzer U, Hilbig A. et al. Rationale and design of PROSPECT-CONKO 004: a prospective, randomized trial of simultaneous pancreatic cancer treatment with enoxaparin and chemotherapy. BMC Cancer 2008; 08: 361.
  • 60 Lee AY, Levine MN, Baker RI. et al. Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer. N Engl J Med 2003; 349: 146-153.
  • 61 Lee AY, Bauersachs R, Janas MS. et al. CATCH Investigators. CATCH: a randomised clinical trial comparing long-term tinzaparin versus warfarin for treatment of acute venous thromboembolism in cancer patients. BMC Cancer 2013; 13: 284.
  • 62 Van der Hulle T, den Exter PL, Kooiman J. et al. Meta-analysis of the efficacy and safety of new oral anticoagulants in patients with cancer-associated acute venous thromboembolism. J Thromb Haemost 2014; 12: 1116-1120.
  • 63 Rosovsky R, Lee AY. Evidence-based mini-review: should all patients with idiopathic venous thromboembolic events be screened extensively for occult malignancy?. Hematology Am Soc Hematol Educ Program 2010; 2010: 150-152.
  • 64 Piccioli A, Lensing AW, Prins MH. et al. SOMIT Investigators Group. Extensive screening for occult malignant disease in idiopathic venous thromboembolism: a prospective randomized clinical trial. J Thromb Haemost 2004; 02: 884-889.
  • 65 Kwaan HC, Cull EH. The coagulopathy in acute promyelocytic leukaemia – what have we learned in the past twenty years. Best Pract Res Clin Haematol 2014; 27: 11-18.
  • 66 Langer F, Spath B, Haubold K. et al. Tissue factor procoagulant activity of plasma microparticles in patients with cancer-associated disseminated in- travascular coagulation. Ann Hematol 2008; 87: 451-457.
  • 67 Langer F, Steinmetz O, Marx G. et al. Aprotinin-associated hemolytic thrombotic microangiopathy in a patient with acute myelogenous leukemia and systemic coagulopathy. Am J Hematol 2007; 82: 1122-1124.
  • 68 Falanga A, Marchetti M. Thrombotic disease in the myeloproliferative neoplasms. Hematology Am Soc Hematol Educ Program 2012; 2012: 571-581.
  • 69 Kreher S, Ochsenreither S, Trappe RU. et al. Prophylaxis and management of venous thromboembolism in patients with myeloproliferative neoplasms. Ann Hematol. 2014 [in Druck].
  • 70 Tefferi A. Polycythemia vera and essential thrombocythemia: 2012 update on diagnosis, risk stratification, and management. Am J Hematol 2012; 87: 285-293.
  • 71 Ruf W, Mueller BM. Thrombin generation and the pathogenesis of cancer. Semin Thromb Hemost 2006; 32: 61-68.
  • 72 Ruf W, Disse J, Carneiro-Lobo TC. et al. Tissue factor and cell signalling in cancer progression and thrombosis. J Thromb Haemost 2011; 09 (Suppl. 01) 306-315.
  • 73 Ott I, Fischer EG, Miyagi Y. et al. A role for tissue factor in cell adhesion and migration mediated by interaction with actin-binding protein 280. J Cell Biol 1998; 140: 1241-1253.
  • 74 Abe K, Shoji M, Chen J. et al. Regulation of vascular endothelial growth factor production and angiogenesis by the cytoplasmic tail of tissue factor. Proc Natl Acad Sci USA 1999; 96: 8663-8668.
  • 75 Dorfleutner A, Hintermann E, Tarui T. et al. Crosstalk of integrin alpha3beta1 and tissue factor in cell migration. Mol Biol Cell 2004; 15: 4416-4425.
  • 76 Palumbo JS, Talmage KE, Massari JV. et al. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 2005; 105: 178-185.
  • 77 Im JH, Fu W, Wang H. et al. Coagulation facilitates tumor cell spreading in the pulmonary vasculature during early metastatic colony formation. Cancer Res 2004; 64: 8613-8619.
  • 78 Francis JL, Amirkhosravi A. Effect of antihemostatic agents on experimental tumor dissemination. Semin Thromb Hemost 2002; 28: 29-38.
  • 79 Horowitz NA, Blevins EA, Miller WM. et al. Thrombomodulin is a determinant of metastasis through a mechanism linked to the thrombin binding domain but not the lectin-like domain. Blood 2011; 118: 2889-2895.
  • 80 Ludwig RJ, Alban S, Bistrian R. et al. The ability of different forms of heparins to suppress P-selectin function in vitro correlates to their inhibitory capacity on blood-borne metastasis in vivo. Thromb Haemost 2006; 95: 535-540.
  • 81 Mousa SA, Linhardt R, Francis JL, Amirkhosravi A. Anti-metastatic effect of a non-anticoagulant low-molecular-weight heparin versus the standard low-molecular-weight heparin, enoxaparin. Thromb Haemost 2006; 96: 816-821.
  • 82 Zacharski LR, Henderson WG, Rickles FR. et al. Effect of warfarin on survival in small cell carcinoma of the lung. Veterans Administration Study No. 75. JAMA 1981; 245: 831-835.
  • 83 Akl EA, Vasireddi SR, Gunukula S. et al. Anticoagulation for the initial treatment of venous thromboembolism in patients with cancer. Cochrane Database Syst Rev 2011; 06: CD006649.
  • 84 Falanga A, Marchetti M. Heparin in tumor progression and metastatic dissemination. Semin Thromb Hemost 2007; 33: 688-694.
  • 85 Kakkar AK, Levine MN, Kadziola Z. et al. Low molecular weight heparin, therapy with dalteparin, and survival in advanced cancer: the fragmin advanced malignancy outcome study (FAMOUS). J Clin Oncol 2004; 22: 1944-1948.
  • 86 Klerk CP, Smorenburg SM, Otten HM. et al. The effect of low molecular weight heparin on survival in patients with advanced malignancy. J Clin Oncol 2005; 23: 2130-2135.
  • 87 Van Doormaal FF, Di Nisio M, Otten HM. et al. Randomized trial of the effect of the low molecular weight heparin nadroparin on survival in patients with cancer. J Clin Oncol 2011; 29: 2071-2076.
  • 88 Sanford D, Naidu A, Alizadeh N, Lazo-Langner A. The effect of low molecular weight heparin on survival in cancer patients: an updated systematic review and meta-analysis of randomized trials. J Thromb Haemost 2014; 12: 1076-1085.
  • 89 Barni S, Bonizzoni E, Verso M. et al. The effect of low-molecular-weight heparin in cancer patients: the mirror image of survival?. Blood 2014; 124: 155-156.