2.12. 18 Chiral Scandium Complexes in Asymmetric Synthesis
Book
Editors: Jiang, X.; Marek, I.; Marschner, C.; Montchamp, J.-L.; Reissig, H.-U.; Wang, M.
Title: Knowledge Updates 2021/1
Print ISBN: 9783132441958; Online ISBN: 9783132441972; Book DOI: 10.1055/b000000476
1st edition © 2021 Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry
Science of Synthesis Knowledge Updates
Parent publication
Title: Science of Synthesis
DOI: 10.1055/b-00000101
Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.
Type: Multivolume Edition
Abstract
Chiral scandium complexes have been widely used in asymmetric synthesis during the last two decades. In this chapter, representative achievements in scandium-catalyzed enantioselective reactions, published between 2003 and 2019, are highlighted. Reaction types covered include aldol-type reactions, Mannich-type reactions, Michael reactions, Friedel–Crafts reactions, rearrangements of carbonyl compounds with diazo compounds, ene-type reactions, photocatalytic reactions, ring-opening reactions, and cycloadditions.
Key words
asymmetric catalysis - chiral compounds - scandium complexes - aldol reaction - Mannich reaction - Michael addition - Friedel–Crafts alkylation - diazo compounds - allylation - photochemistry - ring-opening reactions - cycloaddition- 3 Ogawa C, Gu Y, Boudou M, Kobayashi S, In: Acid Catalysis in Modern Organic Synthesis Yamamoto H, Ishihara K. Wiley-VCH Weinheim, Germany 2008; 589
- 4 Shibasaki M, Matsunaga S, Kumagai N, In: Acid Catalysis in Modern Organic Synthesis Yamamoto H, Ishihara K. Wiley-VCH Weinheim, Germany 2008; 635
- 5 Feng XM, Liu XH, In: Scandium: Compounds, Productions, and Applications Greene VA. Nova Science New York 2011; 1
- 6 Mori Y, Kobayashi S, In: The Rare Earth Elements Artwood DA. Wiley-VCH Weinheim, Germany 2012; 437
- 7 Mikami K, Terada M, Matsuzawa H. Angew. Chem. 2002; 114: 3704 Angew. Chem. Int. Ed. 2002; 41: 3554
- 25 Kokubo M, Ogawa C, Kobayashi S. Angew. Chem. 2008; 120: 7015 Angew. Chem. Int. Ed. 2008; 47: 6909
- 36 Zhao JN, Liu XH, Luo WW, Xie MS, Lin LL, Feng XM. Angew. Chem. 2013; 125: 3557 Angew. Chem. Int. Ed. 2013; 52: 3473
- 54 Wang Z, Yang ZG, Chen DH, Liu XH, Lin LL, Feng XM. Angew. Chem. 2011; 123: 5030 Angew. Chem. Int. Ed. 2011; 50: 4928
- 55 Wang Z, Chen ZL, Bai S, Li W, Liu XH, Lin LL, Feng XM. Angew. Chem. 2012; 124: 2830 Angew. Chem. Int. Ed. 2012; 51: 2776
- 59 Yao Q, Liao YT, Lin LL, Lin XB, Ji J, Liu XH, Feng XM. Angew. Chem. 2016; 128: 1891 Angew. Chem. Int. Ed. 2016; 55: 1859
- 61 He W, Hu Ji, Wang P, Chen L, Ji K, Yang S, Li Y, Xie Z, Xie W. Angew. Chem. 2018; 130: 3868 Angew. Chem. Int. Ed. 2018; 57: 3806
- 70 Hanhan NV, Sahin AH, Chang TW, Fettinger JC, Franz AK. Angew. Chem. 2010; 122: 756 Angew. Chem. Int. Ed. 2010; 49: 744
- 81 Li W, Wang J, Hu XL, Shen K, Wang WT, Chu YY, Lin LL, Liu XH, Feng XM. J. Am. Chem. Soc. 2010; 132: 8532
- 83 Li W, Liu XH, Hao XY, Cai YF, Lin LL, Feng XM. Angew. Chem. 2012; 124: 8772 Angew. Chem. Int. Ed. 2012; 51: 8644
- 84 Tan F, Liu XH, Wang Y, Dong SX, Yu H, Feng XM. Angew. Chem. 2018; 130: 16 408 Angew. Chem. Int. Ed. 2018; 57: 16 176
- 85 Li W, Tan F, Hao XY, Wang G, Tang Y, Liu XH, Lin LL, Feng XM. Angew. Chem. 2015; 127: 1628 Angew. Chem. Int. Ed. 2015; 54: 1608
- 86 Li W, Liu XH, Hao XY, Hu XL, Chu YY, Cao WD, Qin S, Hu CW, Lin LL, Feng XM. J. Am. Chem. Soc. 2011; 133: 15 268
- 92 Shen K, Liu XH, Wang G, Lin LL, Feng XM. Angew. Chem. 2011; 123: 4780 Angew. Chem. Int. Ed. 2011; 50: 4684
- 94 Guo J, Dong SX, Zhang YL, Kuang YL, Liu XH, Lin LL, Feng XM. Angew. Chem. 2013; 125: 10 435 Angew. Chem. Int. Ed. 2013; 52: 10 245
- 101 Hanhan NV, Ball-Jones NR, Tran NT, Franz AK. Angew. Chem. 2012; 124: 1013 Angew. Chem. Int. Ed. 2012; 51: 989
- 102 Marié J.-C, Xiong Y, Min GK, Yeager AR, Taniguchi T, Berova N, Schaus SE, Porco Jr JA. J. Org. Chem. 2010; 75: 4584
- 104 Cai YF, Liu XH, Hui YH, Jiang J, Wang WT, Chen WL, Lin LL, Feng XM. Angew. Chem. 2010; 122: 6296 Angew. Chem. Int. Ed. 2010; 49: 6160
- 109 Zhou PF, Cai YF, Zhong X, Luo W, Kang T, Li J, Liu XH, Lin LL, Feng XM. ACS Catal. 2016; 6: 7778
- 114 Zhan G, Teng H.-L, Luo Y, Lou S.-J, Nishiura M, Hou Z. Angew. Chem. 2018; 130: 12 522 Angew. Chem. Int. Ed. 2018; 57: 12 342
- 118 Miller ZD, Lee BJ, Yoon TP. Angew. Chem. 2017; 129: 12 053 Angew. Chem. Int. Ed. 2017; 56: 11 891
- 119 Ye C.-X, Melcamu YY, Li H.-H, Cheng J.-T, Zhang T.-T, Ruan Y.-P, Zheng X, Lu X, Huang P.-Q. Nat. Commun. 2018; 9: 410
- 120 Schneider C, Sreekanth AR, Mai E. Angew. Chem. 2004; 116: 5809 Angew. Chem. Int. Ed. 2004; 43: 5691
- 128 Xia Y, Lin LL, Chang FZ, Fu X, Liu XH, Feng XM. Angew. Chem. 2015; 127: 13 952 Angew. Chem. Int. Ed. 2015; 54: 13 748
- 129 Xia Y, Liu XH, Zheng HF, Lin LL, Feng XM. Angew. Chem. 2015; 127: 229 Angew. Chem. Int. Ed. 2015; 54: 227
- 130 Xia Y, Lin LL, Chang FZ, Liao YT, Liu XH, Feng XM. Angew. Chem. 2016; 128: 12 416 Angew. Chem. Int. Ed. 2016; 55: 12 228
- 134 Ball-Jones NR, Badillo JJ, Tran NT, Franz AK. Angew. Chem. 2014; 126: 9616 Angew. Chem. Int. Ed. 2014; 53: 9462
- 143 Xie MS, Chen XH, Zhu Y, Gao B, Lin LL, Liu XH, Feng XM. Angew. Chem. 2010; 122: 3887 Angew. Chem. Int. Ed. 2010; 49: 3799
- 154 Furuno H, Kambara T, Tanaka Y, Hanamoto T, Kagawa T, Inanaga J. Tetrahedron Lett. 2003; 44: 6129
- 157 Nan J, Liu J, Zheng H, Zuo Z, Hou L, Hu H, Wang Y, Luan X. Angew. Chem. 2015; 127: 2386 Angew. Chem. Int. Ed. 2015; 54: 2356
- 159 Ge SL, Kang T, Lin LL, Zhang X, Zhao P, Liu XH, Feng XM. Chem. Commun. (Cambridge) 2017; 53: 11 759
- 166 Zhang YH, Liu XH, Zhou L, Wu WB, Huang TY, Liao YT, Lin LL, Feng XM. Chem.–Eur. J. 2014; 20: 15 884
- 167 Hu HP, Liu YB, Lin LL, Zhang YH, Liu XH, Feng XM. Angew. Chem. 2016; 128: 10 252 Angew. Chem. Int. Ed. 2016; 55: 10 098