Donohoe, T. J. et al.: 2022 Science of Synthesis, 2022/3: Knowledge Updates 2022/3 DOI: 10.1055/sos-SD-104-00776
Knowledge Updates 2022/3

4.4.6 Product Subclass 6: Silyltin Reagents

More Information

Book

Editors: Donohoe, T. J.; Huang, Z. ; Marschner, C. ; Oestreich, M.

Authors: Jackowski, O. ; Marschner, C. ; Ohmiya, H. ; Perez-Luna, A. ; Pinto, D. C. G. A. ; Rocha, D. H. A. ; dos Santos, C. M. M. ; Silva, V. L. M. ; Sumida, Y. ; Takeda, N. ; Tang, X.; Yoshida, H.

Title: Knowledge Updates 2022/3

Print ISBN: 9783132452848; Online ISBN: 9783132452862; Book DOI: 10.1055/b000000643

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Knowledge Updates



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

This chapter describes the synthesis of silyltin reagents, also frequently called silylstannanes, and their synthetic applications via silicon-tin σ-bond activation. Transition-metal catalysts and non-transition-metal nucleophilic activators can be used for this purpose, leading to a wide range of silicon-installing and tin-installing reactions that provide direct and efficient access to synthetically useful organosilanes and organostannanes.

 
  • 1 Tamborski C, Ford FE, Soloski EJ. J. Org. Chem. 1963; 28: 237
  • 2 Chenard BL, Laganis ED, Davidson F, RajanBabu TV. J. Org. Chem. 1985; 50: 3666
  • 3 Chenard BL, Van Zyl CM. J. Org. Chem. 1986; 51: 3561
  • 4 Ritter K. Synthesis 1989; 218
  • 5 Barrett AGM, Wan PWH. J. Org. Chem. 1996; 61: 8667
  • 6 Hemeon I, Singer RD. J. Mol. Catal. A: Chem. 2004; 214: 33
  • 7 Wang D.-Y, Wang C, Uchiyama M. J. Am. Chem. Soc. 2015; 137: 10 488
  • 8 Murakami M, Matsuda T, Itami K, Ashida S, Terayama M. Synthesis 2004; 1522
  • 9 Kawachi A, Doi N, Tamao K. J. Am. Chem. Soc. 1997; 119: 233
  • 10 Azizian H, Eaborn C, Pidcock A. J. Organomet. Chem. 1981; 215: 49
  • 11 Mitchell TN, Killing H, Dicke R, Wickenkamp R. J. Chem. Soc., Chem. Commun. 1985; 354
  • 12 Mitchell TN, Wickenkamp R, Amamria A, Dicke R, Schneider U. J. Org. Chem. 1987; 52: 4868
  • 13 Murakami M, Amii H, Takizawa N, Ito Y. Organometallics 1993; 12: 4223
  • 14 Nakano T, Miyamoto T, Endoh T, Shimotani M, Ashida N, Morioka T, Takahashi Y. Appl. Organomet. Chem. 2004; 18: 65
  • 15 Endo T, Sasaki F, Hara H, Suzuki J, Tamura S, Nagara Y, Iyoshi T, Saigusa A, Nakano T. Appl. Organomet. Chem. 2007; 21: 183
  • 16 Nielsen TE, Le Quement S, Tanner D. Synthesis 2004; 1381
  • 17 Apte S, Radetich B, Shin S, RajanBabu TV. Org. Lett. 2004; 6: 4053
  • 18 Konno T, Kinugawa R, Ishihara T, Yamada S. Org. Biomol. Chem. 2014; 12: 1611
  • 19 Gréau S, Radetich B, RajanBabu TV. J. Am. Chem. Soc. 2000; 122: 8579
  • 20 Warren S, Chow A, Fraenkel G, RajanBabu TV. J. Am. Chem. Soc. 2003; 125: 15 402
  • 21 Singidi RR, RajanBabu TV. Org. Lett. 2008; 10: 3351
  • 22 Singidi RR, Kutney AM, Gallucci JC, RajanBabu TV. J. Am. Chem. Soc. 2010; 132: 13 078
  • 23 Mori M, Hirose T, Wakamatsu H, Imakuni N, Sato Y. Organometallics 2001; 20: 1907
  • 24 Sato Y, Imakuni N, Mori M. Adv. Synth. Catal. 2003; 345: 488
  • 25 Sato Y, Imakuni N, Hirose T, Wakamatsu H, Mori M. J. Organomet. Chem. 2003; 687: 392
  • 26 Lautens M, Mancuso J. Synlett 2002; 394
  • 27 Shin S, RajanBabu TV. J. Am. Chem. Soc. 2001; 123: 8416
  • 28 Kumareswaran R, Shin S, Gallou I, RajanBabu TV. J. Org. Chem. 2004; 69: 7157
  • 29 Hemeon I, Singer RD. Chem. Commun. (Cambridge) 2002; 1884
  • 30 Wesquet A. O, Kazmaier U. Angew. Chem. Int. Ed. 2008; 47: 3050
  • 31 Mitchell TN, Schneider U. J. Organomet. Chem. 1991; 407: 319
  • 32 Jeganmohan M, Shanmugasundaram M, Chang K.-J, Cheng C.-H. Chem. Commun. (Cambridge) 2002; 2552
  • 33 Kang S.-K, Baik T.-G, Kulak AN, Ha Y.-H, Lim Y, Park J. J. Am. Chem. Soc. 2000; 122: 11 529
  • 34 Kang S.-K, Ha Y.-H, Ko B.-S, Lim Y, Jung J. Angew. Chem. Int. Ed. 2002; 41: 343
  • 35 Kumareswaran R, Gallucci J, RajanBabu TV. J. Org. Chem. 2004; 69: 9151
  • 36 Tsuji Y, Obora Y. J. Am. Chem. Soc. 1991; 113: 9368
  • 37 Obora Y, Tsuji Y, Kakehi T, Kobayashi M, Shinkai Y, Ebihara M, Kawamura T. J. Chem. Soc., Perkin Trans. 1 1995; 599
  • 38 Sato Y, Saito N, Mori M. Chem. Lett. 2002; 18
  • 39 Saito N, Mori M, Sato Y. J. Organomet. Chem. 2007; 692: 460
  • 40 Obora Y, Tsuji Y, Asayama M, Kawamura T. Organometallics 1993; 12: 4697
  • 41 Rubina M, Rubin M, Gevorgyan V. J. Am. Chem. Soc. 2002; 124: 11 566
  • 42 Trofimov A, Rubina M, Rubin M, Gevorgyan V. J. Org. Chem. 2007; 72: 8910
  • 43 Yoshida H, Shinke A, Kawano Y, Takaki K. Chem. Commun. (Cambridge) 2015; 51: 10 616
  • 44 Kosugi M, Ohya T, Migita T. Bull. Chem. Soc. Jpn. 1983; 56: 3539
  • 45 Kjellgren J, Sundén H, Szabó KJ. J. Am. Chem. Soc. 2005; 127: 1787
  • 46 Mori M, Kaneta N, Shibasaki M. J. Org. Chem. 1991; 56: 3486
  • 47 Geng F, Maleczka Jr RE. Tetrahedron Lett. 1999; 40: 3113
  • 48 Wang X, Wang Z, Liu L, Asanuma Y, Nishihara Y. Molecules 2019; 24: 1671
  • 49 Gu Y, Martín R. Angew. Chem. Int. Ed. 2017; 56: 3187
  • 50 Tsuji Y, Kajita S, Isobe S, Funato M. J. Org. Chem. 1993; 58: 3607
  • 51 Yue H, Zhu C, Rueping M. Org. Lett. 2018; 20: 385
  • 52 Wu M.-Y, Yang F.-Y, Cheng C.-H. J. Org. Chem. 1999; 64: 2471
  • 53 Obora Y, Tsuji Y, Kawamura T. J. Am. Chem. Soc. 1995; 117: 9814
  • 54 Mori M, Isono N, Wakamatsu H. Synlett 1999; 269
  • 55 Kawachi A, Maeda H, Tamao K. Bull. Chem. Soc. Jpn. 2005; 78: 1520
  • 56 Kawachi A, Oishi Y, Kataoka T, Tamao K. Organometallics 2004; 23: 2949
  • 57 Studer A. Angew. Chem. Int. Ed. 1998; 37: 462
  • 58 Studer A, Steen H. Chem.–Eur. J. 1999; 5: 759
  • 59 Studer A, Amrein S, Matsubara H, Schiesser CH, Doi T, Kawamura T, Fukuyama T, Ryu I. Chem. Commun. (Cambridge) 2003; 1190
  • 60 Liebeskind LS, Fengl RW. J. Org. Chem. 1990; 55: 5359
  • 61 Bhatt RK, Ye J, Falck JR. Tetrahedron Lett. 1994; 35: 4081
  • 62 Blanc R, Commeiras L, Parrain J.-L. Adv. Synth. Catal. 2010; 352: 661
  • 63 Blanc R, Nava P, Rajzman M, Commeiras L, Parrain J.-L. Adv. Synth. Catal. 2012; 354: 2038
  • 64 Mori M, Kaneta N, Isono N, Shibasaki M. Tetrahedron Lett. 1991; 32: 6139
  • 65 Dickson S, Dean D, Singer RD. Chem. Commun. (Cambridge) 2005; 4474
  • 66 Schmidt RK, Oestreich M. Synlett 2008; 1690
  • 67 Isono N, Mori M. Tetrahedron Lett. 1995; 36: 9345
  • 68 Isono N, Mori M. Main Group Met. Chem. 1996; 19: 277
  • 69 Isono N, Mori M. J. Org. Chem. 1996; 61: 7867
  • 70 Isono N, Mori M. J. Org. Chem. 1998; 63: 1773
  • 71 Honda T, Mori M. Chem. Lett. 1994; 1013
  • 72 Mita T, Higuchi Y, Sato Y. Org. Lett. 2011; 13: 2354
  • 73 Mita T, Chen J, Sugawara M, Sato Y. Angew. Chem. Int. Ed. 2011; 50: 1393
  • 74 Mita T, Higuchi Y, Sato Y. Chem.–Eur. J. 2013; 19: 1123
  • 75 Luescher MU, Bode JW. Org. Lett. 2016; 18: 2652
  • 76 Wang D.-Y, Wen X, Xiong C.-D, Zhao J.-N, Ding C.-Y, Meng Q, Zhou H, Wang C, Uchiyama M, Lu X.-J, Zhang A. iScience 2019; 307
  • 77 Sakamoto K, Nagashima Y, Wang C, Miyamoto K, Tanaka K, Uchiyama M. J. Am. Chem. Soc. 2021; 143: 5629
  • 78 Mori M, Kaneta N, Isono N, Shibasaki M. J. Organomet. Chem. 1993; 455: 255
  • 79 Mori M, Isono N, Kaneta N, Shibasaki M. J. Org. Chem. 1993; 58: 2972
  • 80 Mori M, Hashimoto A, Shibasaki M. J. Org. Chem. 1993; 58: 6503
  • 81 Mori M, Kaneta N, Shibasaki M. J. Organomet. Chem. 1994; 464: 35
  • 82 Kinoshita A, Mori M. Chem. Lett. 1994; 1475
  • 83 Sato H, Isono N, Miyoshi I, Mori M. Tetrahedron 1996; 52: 8143
  • 84 Sato H, Isono N, Okamura K, Date T, Mori M. Tetrahedron Lett. 1994; 35: 2035