Donohoe, T. J. et al.: 2022 Science of Synthesis, 2022/3: Knowledge Updates 2022/3 DOI: 10.1055/sos-SD-104-00776
Knowledge Updates 2022/3

4.4.6 Product Subclass 6: Silyltin Reagents

More Information

Book

Editors: Donohoe, T. J.; Huang, Z. ; Marschner, C. ; Oestreich, M.

Authors: Jackowski, O. ; Marschner, C. ; Ohmiya, H. ; Perez-Luna, A. ; Pinto, D. C. G. A. ; Rocha, D. H. A. ; Santos, C. M. M. ; Silva, V. L. M. ; Sumida, Y. ; Takeda, N. ; Tang, X.; Yoshida, H.

Title: Knowledge Updates 2022/3

Print ISBN: 9783132452848; Online ISBN: 9783132452862; Book DOI: 10.1055/b000000643

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Knowledge Updates



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

This chapter describes the synthesis of silyltin reagents, also frequently called silylstannanes, and their synthetic applications via silicon-tin σ-bond activation. Transition-metal catalysts and non-transition-metal nucleophilic activators can be used for this purpose, leading to a wide range of silicon-installing and tin-installing reactions that provide direct and efficient access to synthetically useful organosilanes and organostannanes.

 
  • 4 Ritter K. Synthesis 1989; 218
  • 8 Murakami M, Matsuda T, Itami K, Ashida S, Terayama M. Synthesis 2004; 1522
  • 11 Mitchell TN, Killing H, Dicke R, Wickenkamp R. J. Chem. Soc., Chem. Commun. 1985; 354
  • 14 Nakano T, Miyamoto T, Endoh T, Shimotani M, Ashida N, Morioka T, Takahashi Y. Appl. Organomet. Chem. 2004; 18: 65
  • 15 Endo T, Sasaki F, Hara H, Suzuki J, Tamura S, Nagara Y, Iyoshi T, Saigusa A, Nakano T. Appl. Organomet. Chem. 2007; 21: 183
  • 16 Nielsen TE, Le Quement S, Tanner D. Synthesis 2004; 1381
  • 26 Lautens M, Mancuso J. Synlett 2002; 394
  • 29 Hemeon I, Singer RD. Chem. Commun. (Cambridge) 2002; 1884
  • 32 Jeganmohan M, Shanmugasundaram M, Chang K.-J, Cheng C.-H. Chem. Commun. (Cambridge) 2002; 2552
  • 33 Kang S.-K, Baik T.-G, Kulak AN, Ha Y.-H, Lim Y, Park J. J. Am. Chem. Soc. 2000; 122: 11 529
  • 37 Obora Y, Tsuji Y, Kakehi T, Kobayashi M, Shinkai Y, Ebihara M, Kawamura T. J. Chem. Soc., Perkin Trans. 1 1995; 599
  • 38 Sato Y, Saito N, Mori M. Chem. Lett. 2002; 18
  • 54 Mori M, Isono N, Wakamatsu H. Synlett 1999; 269
  • 59 Studer A, Amrein S, Matsubara H, Schiesser CH, Doi T, Kawamura T, Fukuyama T, Ryu I. Chem. Commun. (Cambridge) 2003; 1190
  • 65 Dickson S, Dean D, Singer RD. Chem. Commun. (Cambridge) 2005; 4474
  • 66 Schmidt RK, Oestreich M. Synlett 2008; 1690
  • 71 Honda T, Mori M. Chem. Lett. 1994; 1013
  • 76 Wang D.-Y, Wen X, Xiong C.-D, Zhao J.-N, Ding C.-Y, Meng Q, Zhou H, Wang C, Uchiyama M, Lu X.-J, Zhang A. iScience 2019; 307
  • 77 Sakamoto K, Nagashima Y, Wang C, Miyamoto K, Tanaka K, Uchiyama M. J. Am. Chem. Soc. 2021; 143: 5629
  • 82 Kinoshita A, Mori M. Chem. Lett. 1994; 1475