Jiang, X. et al.: 2021 Science of Synthesis: Knowledge Updates 2021/1 DOI: 10.1055/sos-SD-105-00286
Knowledge Updates 2021/1

5.1.29 Product Subclass 29: Silylated Germanes

Weitere Informationen

Buch

Herausgeber: Jiang, X.; Marek, I.; Marschner, C.; Montchamp, J.-L.; Reissig, H.-U.; Wang, M.

Autoren: Blazewska, K.; Feng, X. M.; Grimmer, J.; Gudat, D.; Hlina, J. A.; Justyna, K.; Kashemirov, B. A.; Krieg, S.-C.; Li, W.; Liu, X. H.; Lyu, J.; Manolikakes, G.; McKenna, C. E.; Singh, F. V.

Titel: Knowledge Updates 2021/1

Print ISBN: 9783132441958; Online ISBN: 9783132441972; Buch-DOI: 10.1055/b000000476

Fachgebiete: Organische Chemie;Chemische Reaktionen, Katalyse;Organometallchemie;Chemische Labormethoden, Stöchiometrie

Science of Synthesis Knowledge Updates



Übergeordnete Publikation

Titel: Science of Synthesis

DOI: 10.1055/b-00000101

Reihenherausgeber: Fürstner (Editor-in-Chief), A.; Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Typ: Mehrbändiges Werk

 


Abstract

This chapter is focussed on the preparation of silylated germanes by silicon–germanium bond formation, and the applications of these compounds in organic synthesis. The synthetic methods are organized according to the reaction type used for the silicon–germanium bond formation. The discussion begins with the reductive coupling of silicon and germanium electrophiles, a Wurtz-type coupling reaction, which is a workhorse of heavier group 14 synthesis. This is followed by a presentation of reactions of such electrophiles with anionic germanium or silicon compounds, allowing for the synthesis of more complicated catenates. Then, the formation of silylated germanes by insertion of germylenes or silylenes into reactive group 14–main group element bonds is described. This is followed by a presentation of silicon–germanium bond formation by Lewis acid catalyzed rearrangement reactions. The chapter concludes with a discussion of the applications of silylated germanes in organic synthesis.

 
  • 1 Rivière P, Rivière-Baudet M, Satgé J, In: Comprehensive Organometallic Chemistry Wilkinson G, Stone FGA, Abel EW. Pergamon Oxford 1982; 2. 399
  • 2 Weinert CS, In: Comprehensive Organometallic Chemistry III Crabtree RH, Mingos DMP. Elsevier Amsterdam 2007; 3. 699
  • 3 Amadoruge ML, Weinert CS. Chem. Rev. 2008; 108: 4253
  • 4 Hiyama T, In: Organometallics in Synthesis Schlosser M. Wiley Hoboken, NJ 2013; 373
  • 5 Beckmann J, In: Comprehensive Organometallic Chemistry III Crabtree RH, Mingos DMP. Elsevier Amsterdam 2007; 3. 409
  • 6 Liepiņš E, Zicmane I, Lukevics E. J. Organomet. Chem. 1988; 341: 315
  • 7 Weinert CS. ISRN Spectrosc. 2012; 1
  • 8 Shaw CF, Allred AL. Inorg. Chem. 1971; 10: 1340
  • 9 Soderquist JA, Hassner A. J. Organomet. Chem. 1978; 156: 227
  • 10 Konieczny S, Jacobs SJ, Braddock Wilking JK, Gaspar PP. J. Organomet. Chem. 1988; 341: C17
  • 11 Lee VYa, Ichinohe M, Sekiguchi A. J. Organomet. Chem. 2003; 685: 168
  • 12 Lalov AV, Nosov KS, Egorov MP, Nefedov OM. Russ. Chem. Bull. 2004; 53: 2334
  • 13 Emanuelsson R, Denisova AV, Baumgartner J, Ottosson H. Organometallics 2014; 33: 2997
  • 14 Pop L.-C, Kurokawa N, Ebata H, Tomizawa K, Tajima T, Saito M. Eur. J. Inorg. Chem. 2017; 4969
  • 15 Baines KM, Cooke JA. Organometallics 1991; 10: 3419
  • 16 Kolleger GM, Stibbs WG, Vittal JJ, Baines KM. Main Group Met. Chem. 1996; 19: 317
  • 17 Suzuki H, Fukuda Y, Sato N, Ohmori H, Goto M, Watanabe H. Chem. Lett. 1991; 853
  • 18 Suzuki H, Okabe K, Kato R, Sato N, Fukuda Y, Watanabe H, Goto M. Organometallics 1993; 12: 4833
  • 19 Hashimoto H, Yagihashi Y, Ignatovich L, Kira M. Heteroat. Chem. 2001; 12: 398
  • 20 Brook AG, Abdesaken F, Söllradl H. J. Organomet. Chem. 1986; 299: 9
  • 21 Baines KM, Mueller KA, Sham TK. Can. J. Chem. 1992; 70: 2884
  • 22 Kashimura S, Ishifune M, Yamashita N, Bu H.-B, Takebayashi M, Kitajima S, Yoshiwara D, Kataoka Y, Nishida R, Kawasaki S, Murase H, Shono T. J. Org. Chem. 1999; 64: 6615
  • 23 Singer R. Science of Synthesis 2002; 4: 237
  • 24 Kleeberg C. Science of Synthesis Knowledge Updates 2017; 1: 177
  • 25 Takeda N, Tokitoh N, Okazaki R. Science of Synthesis. 2003; 5: 33
  • 26 Pannell KH, Kapoor RN, Raptis R, Párkányi L, Fülöp V. J. Organomet. Chem. 1990; 384: 41
  • 27 Corriu RJP, Guerin C, Kolani B. Bull. Soc. Chim. Fr. 1985; 973
  • 28 Charissé M, Mathes M, Simon D, Dräger M. J. Organomet. Chem. 1993; 445: 39
  • 29 Strohmann C, Däschlein C. Organometallics 2008; 27: 2499
  • 30 Nanjo M, Sekiguchi A. Organometallics 1998; 17: 492
  • 31 Hlina J, Zitz R, Wagner H, Stella F, Baumgartner J, Marschner C. Inorg. Chim. Acta 2014; 422: 120
  • 32 Mallela SP, Saar Y, Hill S, Geanangel RA. Inorg. Chem. 1999; 38: 2957
  • 33 Stueger H, Christopoulos V, Temmel A, Haas M, Fischer R, Torvisco A, Wunnicke O, Traut S, Martens S. Inorg. Chem. 2016; 55: 4034
  • 34 Freeman WP, Tilley TD, Rheingold AL, Ostrander RL. Angew. Chem. Int. Ed. 1993; 32: 1744
  • 35 Freeman WP, Dysard JM, Tilley TD, Rheingold AL. Organometallics 2002; 21: 1734
  • 36 Englich U, Hengge E, Hermann U, Marschner C, Ruhlandt-Senge K, Uhlig F. J. Organomet. Chem. 2000; 605: 22
  • 37 Marschner C, Fischer J, Gaderbauer W, Baumgartner J. Heterocycles 2006; 67: 507
  • 38 Mallela SP, Geanangel RA. Inorg. Chem. 1991; 30: 1480
  • 39 Mallela SP, Geanangel RA. Inorg. Chem. 1994; 33: 1115
  • 40 Lerner H.-W, Schödel F, Sänger I, Wagner M, Bolte M. Z. Naturforsch., B 2004; 59: 277
  • 41 Ichinohe M, Sekiyama H, Fukaya N, Sekiguchi A. J. Am. Chem. Soc. 2000; 122: 6781
  • 42 Sekiguchi A, Fukawa T, Nakamoto M, Lee VYa, Ichinohe M. J. Am. Chem. Soc. 2002; 124: 9865
  • 43 Heine A, Stalke D. Angew. Chem. Int. Ed. Engl. 1994; 33: 113
  • 44 Kawachi A, Machida K, Yamamoto Y. Organometallics 2009; 28: 6347
  • 45 Sekiguchi A, Fukaya N, Ichinohe M, Takagi N, Nagase S. J. Am. Chem. Soc. 1999; 121: 11 587
  • 46 Uhlig W. J. Organomet. Chem. 1991; 421: 189
  • 47 Baines KM, Groh RJ, Joseph B, Parshotam UR. Organometallics 1992; 11: 2176
  • 48 Bravo-Zhivotovskii DA, Neretin VV, Kruglaya OA, Vyazankin NS. Izv. Akad. Nauk SSSR, Ser. Khim. 1980; 1451
  • 49 Párkányi L, Hernandez C, Pannell KH. J. Organomet. Chem. 1986; 301: 145
  • 50 Corriu RJP, Ould-Kada S, Lanneau G. J. Organomet. Chem. 1983; 248: 23
  • 51 Zaitsev KV, Oprunenko YF, Churakov AV, Zaitseva GS, Karlov SS. Main Group Met. Chem. 2014; 37: 67
  • 52 Lee VYa, Yasuda H, Ichinohe M, Sekiguchi A. J. Organomet. Chem. 2007; 692: 10
  • 53 Zaitsev KV, Tafeenko VA, Oprunenko YF, Kharcheva AV, Zhanabil Z, Suleimen Y, Lam K, Zaitsev VB, Zaitseva AV, Zaitseva GS, Karlov SS. Chem.–Asian J. 2017; 12: 1240
  • 54 Koe JR, Tobita H, Ogino H. Organometallics 1992; 11: 2479
  • 55 Mochida K, Ogawa S, Naito N, Gaber AE.-A, Usui Y, Nanjo M. Chem. Lett. 2007; 36: 414
  • 56 Aghazadeh Meshgi M, Baumgartner J, Jouikov VV, Marschner C. Organometallics 2017; 36: 342
  • 57 Hlina J, Baumgartner J, Marschner C. Organometallics 2010; 29: 5289
  • 58 Bravo-Zhivotovskii DA, Pigarev SD, Vyazankina OA, Vyazankin NS. Zh. Obshch. Khim. 1987; 57: 2644
  • 59 Fischer J, Baumgartner J, Marschner C. Organometallics 2005; 24: 1263
  • 60 Kawachi A, Machida K, Yamamoto Y. Chem. Commun. (Cambridge) 2010; 46: 1890
  • 61 Hlina J, Mechtler C, Wagner H, Baumgartner J, Marschner C. Organometallics 2009; 28: 4065
  • 62 Suzuki H, Tanaka K, Yoshizoe B, Yamamoto T, Kenmotsu N, Matuura S, Akabane T, Watanabe H, Goto M. Organometallics 1998; 17: 5091
  • 63 Suzuki H, Kenmotu N, Tanaka K, Watanabe H, Goto M. Chem. Lett. 1995; 811
  • 64 Boudin A, Cerveau G, Chuit C, Corriu RJP, Reye C. Organometallics 1988; 7: 1165
  • 65 Haas M, Leypold M, Schnalzer D, Torvisco A, Stueger H. Organometallics 2015; 34: 5291
  • 66 Fujimori S, Mizuhata Y, Tokitoh N. Chem.–Eur. J. 2018; 24: 17 039
  • 67 Zaitsev KV, Lermontova EKh, Churakov AV, Tafeenko VA, Tarasevich BN, Poleshchuk OKh, Kharcheva AV, Magdesieva TV, Nikitin OM, Zaitseva GS, Karlov SS. Organometallics 2015; 34: 2765
  • 68 Lobreyer T, Oeler J, Sundermeyer W. Chem. Ber. 1991; 124: 2405
  • 69 Ritter CJ, Hu C, Chizmeshya AVG, Tolle J, Klewer D, Tsong IST, Kouvetakis J. J. Am. Chem. Soc. 2005; 127: 9855
  • 70 Lobreyer T, Oeler J, Sundermeyer W, Oberhammer H. Chem. Ber. 1993; 126: 665
  • 71 Dufour P, Dubac J, Dartiguenave M, Dartiguenave Y. Organometallics 1990; 9: 3001
  • 72 Jutzi P, Karl A. J. Organomet. Chem. 1981; 215: 19
  • 73 Choi S.-B, Boudjouk P, Qin K. Organometallics 2000; 19: 1806
  • 74 Liu Y, Ballweg D, Müller T, Guzei IA, Clark RW, West R. J. Am. Chem. Soc. 2002; 124: 12 174
  • 75 Song JH, Nabeya T, Adachi Y, Ooyama Y, Ohshita J. J. Organomet. Chem. 2019; 883: 47
  • 76 Choi S.-B, Boudjouk P, Hong J.-H. Organometallics 1999; 18: 2919
  • 77 Moiseev AG, Leigh WJ. Organometallics 2007; 26: 6277
  • 78 Lee VYa, Horiguchi S, Sekiguchi A, Gapurenko OA, Gribanova TN, Minkin VI, Gornitzka H. ACS Omega 2019; 4: 2902
  • 79 Hinchley SL, McLachlan LJ, Robertson HE, Rankin DWH, Seppälä E, du Mont W.-W. Inorg. Chim. Acta 2007; 360: 1323
  • 80 Müller L, du Mont W.-W, Ruthe F, Jones PG, Marsmann HC. J. Organomet. Chem. 1999; 579: 156
  • 81 Neumann WP. Chem. Rev. 1991; 91: 311
  • 82 Lee VYa, Sekiguchi A. Organometallic Compounds of Low-Coordinate Si, Ge, Sn, and Pb: From Phantom Species to Stable Compounds. Wiley; Chichester, U.K. 2010
  • 83 Mizuhata Y, Sasamori T, Tokitoh N. Chem. Rev. 2009; 109: 3479
  • 84 Baines KM, Cooke JA, Vittal JJ. J. Chem. Soc., Chem. Commun. 1992; 1484
  • 85 Hurni KL, Rupar PA, Payne NC, Baines KM. Organometallics 2007; 26: 5569
  • 86 Samuel MS, Jennings MC, Baines KM. Organometallics 2001; 20: 590
  • 87 Dixon CE, Cooke JA, Baines KM. Organometallics 1997; 16: 5437
  • 88 Samuel MS, Jennings MC, Baines KM. J. Organomet. Chem. 2001; 636: 130
  • 89 Suzuki Y, Sasamori T, Guo J.-D, Tokitoh N. Chem.–Eur. J. 2018; 24: 364
  • 90 Usher M, Protchenko AV, Rit A, Campos J, Kolychev EL, Tirfoin R, Aldridge S. Chem.–Eur. J. 2016; 22: 11 685
  • 91 Drost C, Hitchcock PB, Lappert MF. Organometallics 2002; 21: 2095
  • 92 Tsutsui S, Tanaka H, Kwon E, Matsumoto S, Sakamoto K. J. Organomet. Chem. 2006; 691: 595
  • 93 Del Rio N, Lopez-Reyes M, Baceiredo A, Saffon-Merceron N, Lutters D, Müller T, Kato T. Angew. Chem. Int. Ed. 2017; 56: 1365
  • 94 Inomata K, Watanabe T, Miyazaki Y, Tobita H. J. Am. Chem. Soc. 2015; 137: 11 935
  • 95 Sugahara T, Sasamori T, Tokitoh N. Angew. Chem. Int. Ed. 2017; 56: 9920
  • 96 Walewska M, Hlina J, Baumgartner J, Müller T, Marschner C. Organometallics 2016; 35: 2728
  • 97 Hlina J, Baumgartner J, Marschner C, Albers L, Müller T. Organometallics 2013; 32: 3404
  • 98 Aghazadeh Meshgi M, Zitz R, Walewska M, Baumgartner J, Marschner C. Organometallics 2017; 36: 1365
  • 99 Walewska M, Baumgartner J, Marschner C, Albers L, Müller T. Chem.–Eur. J. 2016; 22: 18 512
  • 100 Walewska M, Baumgartner J, Marschner C. Chem. Commun. (Cambridge) 2015; 51: 276
  • 101 Seyferth D, Escudie J, Shannon ML, Satgé J. J. Organomet. Chem. 1980; 198: C51
  • 102 Seyferth D, Annarelli DC, Shannon ML, Escudie J, Duncan DP. J. Organomet. Chem. 1982; 225: 177
  • 103 Komoriya H, Kako M, Nakadaira Y, Mochida K. J. Organomet. Chem. 2000; 611: 420
  • 104 Wagner H, Baumgartner J, Müller T, Marschner C. J. Am. Chem. Soc. 2009; 131: 5022
  • 105 Albers L, Aghazadeh Meshgi M, Baumgartner J, Marschner C, Müller T. Organometallics 2015; 34: 3756
  • 106 Albers L, Rathjen S, Baumgartner J, Marschner C, Müller T. J. Am. Chem. Soc. 2016; 138: 6886
  • 107 Nava M, Reed CA. Organometallics 2011; 30: 4798
  • 108 Connelly SJ, Kaminsky W, Heinekey DM. Organometallics 2013; 32: 7478
  • 109 Radebner J, Leypold M, Eibel A, Maier J, Schuh L, Torvisco A, Fischer R, Moszner N, Gescheidt G, Stueger H, Haas M. Organometallics 2017; 36: 3624
  • 110 Jöckle P, Radebner J, Haas M, Lamparth I, Stueger H, Moszner N, Unterreiner A.-N, Barner-Kowollik C. ACS Macro Lett. 2018; 7: 132
  • 111 Chatgilialoglu C, Ballestri M. Organometallics 1995; 14: 5017
  • 112 Studer A, Bossart M, Steen H. Tetrahedron Lett. 1998; 39: 8829
  • 113 Mochida K, Suzuki H, Nanba M, Kugita T, Yokoyama Y. J. Organomet. Chem. 1995; 499: 83
  • 114 Kabaki M, Inoue S, Nagata Y, Sato Y. Synth. Commun. 1990; 20: 3245
  • 115 Wang D.-Y, Wen X, Xiong C.-D, Zhao J.-N, Ding C.-Y, Meng Q, Zhou H, Wang C, Uchiyama M, Lu X.-J, Zhang A. iScience 2019; 15: 307
  • 116 Kabaki M, Inoue S, Sato Y. Synth. Commun. 1992; 22: 459
  • 117 Ono K, Ishizuka H, Nakano T. J. Organomet. Chem. 1999; 587: 144
  • 118 Yamamoto K, Hayashi A, Suzuki S, Tsuji J. Organometallics 1987; 6: 974
  • 119 Wnuk SF, Garcia PI, Wang Z. Org. Lett. 2004; 6: 2047
  • 120 Liang Y, Pitteloud J.-P, Wnuk SF. J. Org. Chem. 2013; 78: 5761
  • 121 Lotty O, Hobbs R, O’Regan C, Hlina J, Marschner C, O’Dwyer C, Petkov N, Holmes JD. Chem. Mater. 2013; 25: 215
  • 122 Aghazadeh Meshgi M, Biswas S, McNulty D, O’Dwyer C, Alessio Verni G, O’Connell J, Davitt F, Letofsky-Papst I, Poelt P, Holmes JD, Marschner C. Chem. Mater. 2017; 29: 4351
  • 123 Arnold DC, Hobbs RG, Zirngast M, Marschner C, Hill JJ, Ziegler KJ, Morris MA, Holmes JD. J. Mater. Chem. 2009; 19: 954
  • 124 Hobbs RG, Barth S, Petkov N, Zirngast M, Marschner C, Morris MA, Holmes JD. J. Am. Chem. Soc. 2010; 132: 13 742