5.1. 29 Product Subclass 29: Silylated Germanes
Book
Editors: Jiang, X.; Marek, I.; Marschner, C.; Montchamp, J.-L.; Reissig, H.-U.; Wang, M.
Title: Knowledge Updates 2021/1
Print ISBN: 9783132441958; Online ISBN: 9783132441972; Book DOI: 10.1055/b000000476
1st edition © 2021 Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry
Science of Synthesis Knowledge Updates
Parent publication
Title: Science of Synthesis
DOI: 10.1055/b-00000101
Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.
Type: Multivolume Edition
Abstract

This chapter is focussed on the preparation of silylated germanes by silicon–germanium bond formation, and the applications of these compounds in organic synthesis. The synthetic methods are organized according to the reaction type used for the silicon–germanium bond formation. The discussion begins with the reductive coupling of silicon and germanium electrophiles, a Wurtz-type coupling reaction, which is a workhorse of heavier group 14 synthesis. This is followed by a presentation of reactions of such electrophiles with anionic germanium or silicon compounds, allowing for the synthesis of more complicated catenates. Then, the formation of silylated germanes by insertion of germylenes or silylenes into reactive group 14–main group element bonds is described. This is followed by a presentation of silicon–germanium bond formation by Lewis acid catalyzed rearrangement reactions. The chapter concludes with a discussion of the applications of silylated germanes in organic synthesis.
Key words
silanes - germanes - silagermanes - group 14 - silyl anions - germyl anions - Wurtz-type coupling - silylenes - germylenes- 1 Rivière P, Rivière-Baudet M, Satgé J, In: Comprehensive Organometallic Chemistry Wilkinson G, Stone FGA, Abel EW. Pergamon Oxford 1982; 2. 399
- 2 Weinert CS, In: Comprehensive Organometallic Chemistry III Crabtree RH, Mingos DMP. Elsevier Amsterdam 2007; 3. 699
- 5 Beckmann J, In: Comprehensive Organometallic Chemistry III Crabtree RH, Mingos DMP. Elsevier Amsterdam 2007; 3. 409
- 22 Kashimura S, Ishifune M, Yamashita N, Bu H.-B, Takebayashi M, Kitajima S, Yoshiwara D, Kataoka Y, Nishida R, Kawasaki S, Murase H, Shono T. J. Org. Chem. 1999; 64: 6615
- 31 Hlina J, Zitz R, Wagner H, Stella F, Baumgartner J, Marschner C. Inorg. Chim. Acta 2014; 422: 120
- 33 Stueger H, Christopoulos V, Temmel A, Haas M, Fischer R, Torvisco A, Wunnicke O, Traut S, Martens S. Inorg. Chem. 2016; 55: 4034
- 36 Englich U, Hengge E, Hermann U, Marschner C, Ruhlandt-Senge K, Uhlig F. J. Organomet. Chem. 2000; 605: 22
- 48 Bravo-Zhivotovskii DA, Neretin VV, Kruglaya OA, Vyazankin NS. Izv. Akad. Nauk SSSR, Ser. Khim. 1980; 1451
- 51 Zaitsev KV, Oprunenko YF, Churakov AV, Zaitseva GS, Karlov SS. Main Group Met. Chem. 2014; 37: 67
- 53 Zaitsev KV, Tafeenko VA, Oprunenko YF, Kharcheva AV, Zhanabil Z, Suleimen Y, Lam K, Zaitsev VB, Zaitseva AV, Zaitseva GS, Karlov SS. Chem.–Asian J. 2017; 12: 1240
- 62 Suzuki H, Tanaka K, Yoshizoe B, Yamamoto T, Kenmotsu N, Matuura S, Akabane T, Watanabe H, Goto M. Organometallics 1998; 17: 5091
- 67 Zaitsev KV, Lermontova EKh, Churakov AV, Tafeenko VA, Tarasevich BN, Poleshchuk OKh, Kharcheva AV, Magdesieva TV, Nikitin OM, Zaitseva GS, Karlov SS. Organometallics 2015; 34: 2765
- 69 Ritter CJ, Hu C, Chizmeshya AVG, Tolle J, Klewer D, Tsong IST, Kouvetakis J. J. Am. Chem. Soc. 2005; 127: 9855
- 78 Lee VYa, Horiguchi S, Sekiguchi A, Gapurenko OA, Gribanova TN, Minkin VI, Gornitzka H. ACS Omega 2019; 4: 2902
- 79 Hinchley SL, McLachlan LJ, Robertson HE, Rankin DWH, Seppälä E, du Mont W.-W. Inorg. Chim. Acta 2007; 360: 1323
- 82 Lee VYa, Sekiguchi A. Organometallic Compounds of Low-Coordinate Si, Ge, Sn, and Pb: From Phantom Species to Stable Compounds. Wiley; Chichester, U.K. 2010
- 90 Usher M, Protchenko AV, Rit A, Campos J, Kolychev EL, Tirfoin R, Aldridge S. Chem.–Eur. J. 2016; 22: 11 685
- 93 Del Rio N, Lopez-Reyes M, Baceiredo A, Saffon-Merceron N, Lutters D, Müller T, Kato T. Angew. Chem. Int. Ed. 2017; 56: 1365
- 98 Aghazadeh Meshgi M, Zitz R, Walewska M, Baumgartner J, Marschner C. Organometallics 2017; 36: 1365
- 105 Albers L, Aghazadeh Meshgi M, Baumgartner J, Marschner C, Müller T. Organometallics 2015; 34: 3756
- 109 Radebner J, Leypold M, Eibel A, Maier J, Schuh L, Torvisco A, Fischer R, Moszner N, Gescheidt G, Stueger H, Haas M. Organometallics 2017; 36: 3624
- 110 Jöckle P, Radebner J, Haas M, Lamparth I, Stueger H, Moszner N, Unterreiner A.-N, Barner-Kowollik C. ACS Macro Lett. 2018; 7: 132
- 115 Wang D.-Y, Wen X, Xiong C.-D, Zhao J.-N, Ding C.-Y, Meng Q, Zhou H, Wang C, Uchiyama M, Lu X.-J, Zhang A. iScience 2019; 15: 307
- 121 Lotty O, Hobbs R, O’Regan C, Hlina J, Marschner C, O’Dwyer C, Petkov N, Holmes JD. Chem. Mater. 2013; 25: 215
- 122 Aghazadeh Meshgi M, Biswas S, McNulty D, O’Dwyer C, Alessio Verni G, O’Connell J, Davitt F, Letofsky-Papst I, Poelt P, Holmes JD, Marschner C. Chem. Mater. 2017; 29: 4351