Jiang, X. et al.: 2021 Science of Synthesis, 2021/1: Knowledge Updates 2021/1 DOI: 10.1055/sos-SD-105-00286
Knowledge Updates 2021/1

5.1.29 Product Subclass 29: Silylated Germanes

More Information

Book

Editors: Jiang, X.; Marek, I.; Marschner, C.; Montchamp, J.-L.; Reissig, H.-U.; Wang, M.

Authors: Błażewska, K.; Feng, X. M.; Grimmer, J.; Gudat, D. ; Hlina, J. A. ; Justyna, K.; Kashemirov, B. A.; Krieg, S.-C.; Li, W.; Liu, X. H.; Lyu, J.; Manolikakes, G. ; McKenna, C. E.; Singh, F. V.

Title: Knowledge Updates 2021/1

Print ISBN: 9783132441958; Online ISBN: 9783132441972; Book DOI: 10.1055/b000000476

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Knowledge Updates



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

This chapter is focussed on the preparation of silylated germanes by silicon–germanium bond formation, and the applications of these compounds in organic synthesis. The synthetic methods are organized according to the reaction type used for the silicon–germanium bond formation. The discussion begins with the reductive coupling of silicon and germanium electrophiles, a Wurtz-type coupling reaction, which is a workhorse of heavier group 14 synthesis. This is followed by a presentation of reactions of such electrophiles with anionic germanium or silicon compounds, allowing for the synthesis of more complicated catenates. Then, the formation of silylated germanes by insertion of germylenes or silylenes into reactive group 14–main group element bonds is described. This is followed by a presentation of silicon–germanium bond formation by Lewis acid catalyzed rearrangement reactions. The chapter concludes with a discussion of the applications of silylated germanes in organic synthesis.

 
  • 1 Rivière P, Rivière-Baudet M, Satgé J, In: Comprehensive Organometallic Chemistry Wilkinson G, Stone FGA, Abel EW. Pergamon Oxford 1982; 2. 399
  • 4 Hiyama T, In: Organometallics in Synthesis Schlosser M. Wiley Hoboken, NJ 2013; 373
  • 7 Weinert CS. ISRN Spectrosc. 2012; 1
  • 14 Pop L.-C, Kurokawa N, Ebata H, Tomizawa K, Tajima T, Saito M. Eur. J. Inorg. Chem. 2017; 4969
  • 17 Suzuki H, Fukuda Y, Sato N, Ohmori H, Goto M, Watanabe H. Chem. Lett. 1991; 853
  • 22 Kashimura S, Ishifune M, Yamashita N, Bu H.-B, Takebayashi M, Kitajima S, Yoshiwara D, Kataoka Y, Nishida R, Kawasaki S, Murase H, Shono T. J. Org. Chem. 1999; 64: 6615
  • 27 Corriu RJP, Guerin C, Kolani B. Bull. Soc. Chim. Fr. 1985; 973
  • 48 Bravo-Zhivotovskii DA, Neretin VV, Kruglaya OA, Vyazankin NS. Izv. Akad. Nauk SSSR, Ser. Khim. 1980; 1451
  • 53 Zaitsev KV, Tafeenko VA, Oprunenko YF, Kharcheva AV, Zhanabil Z, Suleimen Y, Lam K, Zaitsev VB, Zaitseva AV, Zaitseva GS, Karlov SS. Chem.–Asian J. 2017; 12: 1240
  • 58 Bravo-Zhivotovskii DA, Pigarev SD, Vyazankina OA, Vyazankin NS. Zh. Obshch. Khim. 1987; 57: 2644
  • 62 Suzuki H, Tanaka K, Yoshizoe B, Yamamoto T, Kenmotsu N, Matuura S, Akabane T, Watanabe H, Goto M. Organometallics 1998; 17: 5091
  • 63 Suzuki H, Kenmotu N, Tanaka K, Watanabe H, Goto M. Chem. Lett. 1995; 811
  • 67 Zaitsev KV, Lermontova EKh, Churakov AV, Tafeenko VA, Tarasevich BN, Poleshchuk OKh, Kharcheva AV, Magdesieva TV, Nikitin OM, Zaitseva GS, Karlov SS. Organometallics 2015; 34: 2765
  • 82 Lee VYa, Sekiguchi A. Organometallic Compounds of Low-Coordinate Si, Ge, Sn, and Pb: From Phantom Species to Stable Compounds. Wiley; Chichester, U.K. 2010
  • 84 Baines KM, Cooke JA, Vittal JJ. J. Chem. Soc., Chem. Commun. 1992; 1484
  • 109 Radebner J, Leypold M, Eibel A, Maier J, Schuh L, Torvisco A, Fischer R, Moszner N, Gescheidt G, Stueger H, Haas M. Organometallics 2017; 36: 3624
  • 122 Aghazadeh Meshgi M, Biswas S, McNulty D, O’Dwyer C, Alessio Verni G, O’Connell J, Davitt F, Letofsky-Papst I, Poelt P, Holmes JD, Marschner C. Chem. Mater. 2017; 29: 4351