5.2. 31 Product Subclass 31: Silylated Stannanes
Book
Editors: Jiang, X.; Marek, I.; Marschner, C.; Montchamp, J.-L.; Reissig, H.-U.; Wang, M.
Title: Knowledge Updates 2021/1
Print ISBN: 9783132441958; Online ISBN: 9783132441972; Book DOI: 10.1055/b000000476
1st edition © 2021 Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry
Science of Synthesis Knowledge Updates
Parent publication
Title: Science of Synthesis
DOI: 10.1055/b-00000101
Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.
Type: Multivolume Edition
Abstract

This chapter is focussed on the preparation of silylated stannanes by silicon–tin bond formation, and the applications of these compounds in organic synthesis. The synthetic methods are organized according to the reaction type used for the silicon–tin bond formation. The discussion begins with the reductive coupling of silicon and tin electrophiles, a Wurtz-type coupling reaction, which is a workhorse of heavier group 14 synthesis. This is followed by a presentation of reactions of such electrophiles with anionic tin or silicon compounds, allowing for the synthesis of more complicated catenates. Then, the formation of silylated stannanes by insertion of stannylenes or silylenes into reactive group 14–main group element bonds is described. The chapter concludes with a discussion of the wide range of applications of silylated stannanes in organic synthesis.
Key words
silanes - stannanes - silastannanes - group 14 - silyl anions - stannyl anions - Wurtz-type coupling - silylenes - stannylenes- 2 Beckmann J, In: Comprehensive Organometallic Chemistry III Mingos DMP, Crabtree RH. Elsevier Amsterdam 2007; 3. 409
- 3 Davies AG, In: Comprehensive Organometallic Chemistry III Mingos DMP, Crabtree RH. Elsevier Amsterdam 2007; 3. 809
- 4 Grindley TB, Williams DR, Nag PP, Espinet P, Genov M, Pascual S, Echavarren AM, Chrétien J.-M, Kilburn JD, Zammattio F, Le Grognec E, Quintard J.-P, Grigg R, Sridharan V, Shirakawa E, Young D, In: Tin Chemistry Davies AG, Gielen M, Pannell KH, Tiekink ERT. Wiley Chichester, UK 2008; 497
- 7 Uhlig F, Kayser C, Klassen R, Hermann U, Brecker L, Schürmann M, Ruhlandt-Senge K, Englich U. Z. Naturforsch., B 1999; 54: 278
- 8 Costisella B, Englich U, Prass I, Schürmann M, Ruhlandt-Senge K, Uhlig F. Organometallics 2000; 19: 2546
- 11 Baumgartner J, Schollmeier T, Schürmann M, Uhlig F. Phosphorus, Sulfur Silicon Relat. Elem. 2004; 179: 771
- 18 Schwarze N, Steinhauer S, Neumann B, Stammler H.-G, Hoge B. Angew. Chem. Int. Ed. 2016; 55: 16 161
- 20 Baumgartner J, Fischer R, Fischer J, Wallner A, Marschner C, Flörke U. Organometallics 2005; 24: 6450
- 22 Fischer R, Frank D, Gaderbauer W, Kayser C, Mechtler C, Baumgartner J, Marschner C. Organometallics 2003; 22: 3723
- 23 Walewska M, Hlina J, Gaderbauer W, Wagner H, Baumgartner J, Marschner C. Z. Anorg. Allg. Chem. 2016; 642: 1304
- 30 Becker M, Förster C, Franzen C, Hartrath J, Kirsten E, Knuth J, Klinkhammer KW, Sharma A, Hinderberger D. Inorg. Chem. 2008; 47: 9965
- 34 Wiberg N, Lerner H.-W, Vasisht S.-K, Wagner S, Karaghiosoff K, Nöth H, Ponikwar W. Eur. J. Inorg. Chem. 1999; 1211
- 54 Schollmeier T, Englich U, Fischer R, Prass I, Ruhlandt K, Schürmann M, Uhlig F. Z. Naturforsch., B 2004; 59: 1462
- 69 Protchenko AV, Bates JI, Saleh LMA, Blake MP, Schwarz AD, Kolychev EL, Thompson AL, Jones C, Mountford P, Aldridge S. J. Am. Chem. Soc. 2016; 138: 4555
- 93 García-Fortanet J, Formentín P, Díaz-Oltra S, Murga J, Carda M, Marco JA. Tetrahedron 2013; 69: 3192
- 95 Nakano T, Miyamoto T, Endoh T, Shimotani M, Ashida N, Morioka T, Takahashi Y. Appl. Organomet. Chem. 2004; 18: 65
- 97 Endo T, Sasaki F, Hara H, Suzuki J, Tamura S, Nagata Y, Iyoshi T, Saigusa A, Nakano T. Appl. Organomet. Chem. 2007; 21: 183
- 102 Fürstner A, Bouchez LC, Funel J.-A, Liepins V, Porée F.-H, Gilmour R, Beaufils F, Laurich D, Tamiya M. Angew. Chem. Int. Ed. 2007; 46: 9265
- 103 Fürstner A, Bouchez LC, Morency L, Funel J.-A, Liepins V, Porée F.-H, Gilmour R, Laurich D, Beaufils F, Tamiya M. Chem.–Eur. J. 2009; 15: 3983
- 114 Hodgson DM, Chung YK, Nuzzo I, Freixas G, Kulikiewicz KK, Cleator E, Paris J.-M. J. Am. Chem. Soc. 2007; 129: 4456
- 147 Obora Y, Tsuji Y, Kakehi T, Kobayashi M, Shinkai Y, Ebihara M, Kawamura T. J. Chem. Soc., Perkin Trans. 1 1995; 599
- 154 Murphy JA, Zhou S, Thomson DW, Schoenebeck F, Mahesh M, Park SR, Tuttle T, Berlouis LEA. Angew. Chem. Int. Ed. 2007; 46: 5178
- 166 Wang D.-Y, Wen X, Xiong C.-D, Zhao J.-N, Ding C.-Y, Meng Q, Zhou H, Wang C, Uchiyama M, Lu X.-J, Zhang A. iScience 2019; 15: 307