Jiang, X. et al.: 2021 Science of Synthesis, 2021/1: Knowledge Updates 2021/1 DOI: 10.1055/sos-SD-105-00300
Knowledge Updates 2021/1

5.2.31 Product Subclass 31: Silylated Stannanes

More Information

Book

Editors: Jiang, X.; Marek, I.; Marschner, C.; Montchamp, J.-L.; Reissig, H.-U.; Wang, M.

Authors: Błażewska, K.; Feng, X. M.; Grimmer, J.; Gudat, D. ; Hlina, J. A. ; Justyna, K.; Kashemirov, B. A.; Krieg, S.-C.; Li, W.; Liu, X. H.; Lyu, J.; Manolikakes, G. ; McKenna, C. E.; Singh, F. V.

Title: Knowledge Updates 2021/1

Print ISBN: 9783132441958; Online ISBN: 9783132441972; Book DOI: 10.1055/b000000476

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Knowledge Updates



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

This chapter is focussed on the preparation of silylated stannanes by silicon–tin bond formation, and the applications of these compounds in organic synthesis. The synthetic methods are organized according to the reaction type used for the silicon–tin bond formation. The discussion begins with the reductive coupling of silicon and tin electrophiles, a Wurtz-type coupling reaction, which is a workhorse of heavier group 14 synthesis. This is followed by a presentation of reactions of such electrophiles with anionic tin or silicon compounds, allowing for the synthesis of more complicated catenates. Then, the formation of silylated stannanes by insertion of stannylenes or silylenes into reactive group 14–main group element bonds is described. The chapter concludes with a discussion of the wide range of applications of silylated stannanes in organic synthesis.

 
  • 1 Hiyama T, In: Organometallics in Synthesis Schlosser M. Wiley Hoboken, NJ 2013; 373
  • 4 Grindley TB, Williams DR, Nag PP, Espinet P, Genov M, Pascual S, Echavarren AM, Chrétien J.-M, Kilburn JD, Zammattio F, Le Grognec E, Quintard J.-P, Grigg R, Sridharan V, Shirakawa E, Young D, In: Tin Chemistry Davies AG, Gielen M, Pannell KH, Tiekink ERT. Wiley Chichester, UK 2008; 497
  • 9 Tajima T, Ikeda M, Saito M, Ishimura K, Nagase S. Chem. Commun. (Cambridge) 2008; 6495
  • 10 Pop L.-C, Kurokawa N, Ebata H, Tomizawa K, Tajima T, Saito M. Eur. J. Inorg. Chem. 2017; 4969
  • 14 Ishiwata T, Nonaka T, Umezawa M. Chem. Lett. 1994; 1631
  • 19 Armbruster F, Fernández I, Breher F. Dalton Trans. 2009; 5612
  • 21 Farwell JD, Fernandes MA, Hitchcock PB, Lappert MF, Layh M, Omondi B. Dalton Trans. 2003; 1719
  • 34 Wiberg N, Lerner H.-W, Vasisht S.-K, Wagner S, Karaghiosoff K, Nöth H, Ponikwar W. Eur. J. Inorg. Chem. 1999; 1211
  • 50 Haga R, Saito M, Yoshioka M. Eur. J. Inorg. Chem. 2007; 1297
  • 54 Schollmeier T, Englich U, Fischer R, Prass I, Ruhlandt K, Schürmann M, Uhlig F. Z. Naturforsch., B 2004; 59: 1462
  • 58 Lutz M, Findeis B, Haukka M, Pakkanen TA, Gade LH. Eur. J. Inorg. Chem. 2001; 3155
  • 62 Denk MK, Hatano K, Lough AJ. Eur. J. Inorg. Chem. 1998; 1067
  • 69 Protchenko AV, Bates JI, Saleh LMA, Blake MP, Schwarz AD, Kolychev EL, Thompson AL, Jones C, Mountford P, Aldridge S. J. Am. Chem. Soc. 2016; 138: 4555
  • 76 D’Errico JJ, Sharp KG. J. Chem. Soc., Dalton Trans. 1989; 1879
  • 81 Mitchell TN, Killing H, Dicke R, Wickenkamp R. J. Chem. Soc., Chem. Commun. 1985; 354
  • 85 Mori M, Watanabe N, Kaneta N, Shibasaki M. Chem. Lett. 1991; 1615
  • 91 Farcet J.-B, Himmelbauer M, Mulzer J. Eur. J. Org. Chem. 2013; 8245
  • 95 Nakano T, Miyamoto T, Endoh T, Shimotani M, Ashida N, Morioka T, Takahashi Y. Appl. Organomet. Chem. 2004; 18: 65
  • 96 Nielsen TE, Quement SL, Tanner D. Synthesis 2004; 1381
  • 97 Endo T, Sasaki F, Hara H, Suzuki J, Tamura S, Nagata Y, Iyoshi T, Saigusa A, Nakano T. Appl. Organomet. Chem. 2007; 21: 183
  • 108 Casson S, Kocienski P, Reid G, Smith N, Street JM, Webster M. Synthesis 1994; 1301
  • 110 Naud S, Cintrat J.-C. Synthesis 2003; 1391
  • 115 Bukovec C, Wesquet AO, Kazmaier U. Eur. J. Org. Chem. 2011; 1047
  • 121 Sato Y, Saito N, Mori M. Chem. Lett. 2002; 18
  • 124 Hemeon I, Singer RD. Chem. Commun. (Cambridge) 2002; 1884
  • 126 Murakami M, Matsuda T, Itami K, Ashida S, Terayama M. Synthesis 2004; 1522
  • 128 Ito Y, Bando T, Matsuura T, Ishikawa M. J. Chem. Soc., Chem. Commun. 1986; 980
  • 144 Marco-Contelles J, Mainetti E, Fensterbank L, Malacria M. Eur. J. Org. Chem. 2003; 1759
  • 147 Obora Y, Tsuji Y, Kakehi T, Kobayashi M, Shinkai Y, Ebihara M, Kawamura T. J. Chem. Soc., Perkin Trans. 1 1995; 599
  • 148 Kang S.-K, Baik T.-G, Kulak AN, Ha Y.-H, Lim Y, Park J. J. Am. Chem. Soc. 2000; 122: 11 529
  • 156 Oukoloff K, Buron F, Routier S, Jean L, Renard P.-Y. Eur. J. Org. Chem. 2015; 2450
  • 157 Kinoshita A, Mori M. Chem. Lett. 1994; 1475
  • 169 Blanc R, Nava P, Rajzman M, Commeiras L, Parrain J.-L. Adv. Synth. Catal. 2012; 354: 2038
  • 173 Honda T, Mori M. Chem. Lett. 1994; 1013
  • 174 Dickson S, Dean D, Singer RD. Chem. Commun. (Cambridge) 2005; 4474
  • 178 Schmidt R, Oestreich M. Synlett 2008; 1690
  • 185 Blum A, Hess W, Studer A. Synthesis 2004; 2226
  • 188 Kawachi A, Maeda H, Tamao K. Chem. Lett. 2000; 1216