Fernández, E. et al.: 2021 Science of Synthesis, 2021/2: Knowledge Updates 2021/2 DOI: 10.1055/sos-SD-105-00314
Knowledge Updates 2021/2

5.1.7 Product Subclass 7: Germylenes

More Information

Book

Editors: Fernández, E.; Huang, Z.; Jiang, X.; Koch, G.; Marschner, C.; Wang, M.

Authors: Chand, K. ; Davies, G. H. M.; Dorairaj, D. P.; Guo, R.; Hsu, S. C. N. ; Isovitsch, R.; Jiang, X.; Růžička, A.; Sirvinskas, M.; Takeda, N.; Trofimova, A.; Umesh; Vrána, J.; Wang, M.; Wisniewski, S. R.; Xiong, Y.; Ye, Z.-S.; Yudin, A. K.; Zhang, G. Z.

Title: Knowledge Updates 2021/2

Print ISBN: 9783132442061; Online ISBN: 9783132442085; Book DOI: 10.1055/b000000477

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Knowledge Updates



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

This chapter is a revised and updated version of the previous Science of Synthesis contribution describing methods for the synthesis of germylenes. As starting materials for the synthesis of germylenes, dihalogermanes and stable germanium(II) compounds {for example, GeCl2•dioxane, GeI2, and Ge[N(SiMe3)2]2} have been used since the 1970s. In recent decades, digermynes and some new stable germanium(II) compounds such as chlorogermylenes, aminogermylenes, borylgermylenes, and hydrogermylene dimers have been synthesized, and these species have also been used as starting materials for the synthesis of germylenes.

 
  • 1 Driess M, Grützmacher H. Angew. Chem. Int. Ed. Engl. 1996; 35: 828
  • 2 Neumann WP. Chem. Rev. 1991; 91: 311
  • 3 Tokitoh N, Okazaki R. Coord. Chem. Rev. 2000; 210: 251
  • 4 Barrau J, Rima G. Coord. Chem. Rev. 1998; 178–180: 593
  • 5 Mizuhata Y, Sasamori T, Tokitoh N. Chem. Rev. 2009; 109: 3479
  • 6 Asay M, Jones C, Driess M. Chem. Rev. 2011; 111: 354
  • 7 He G, Shynkaruk O, Lui MW, Rivard E. Chem. Rev. 2014; 114: 7815
  • 8 Chu T, Nikonov GI. Chem. Rev. 2018; 118: 3608
  • 9 Jutzi P, Schmidt H, Neumann B, Stammler H.-G. Organometallics 1996; 15: 741
  • 10 Bender IV JE, Holl MMB, Kampf JW. Organometallics 1997; 16: 2743
  • 11 Wegner GL, Berger RJF, Schier A, Schmidbaur H. Organometallics 2001; 20: 418
  • 12 Simons RS, Pu L, Olmstead MM, Power PP. Organometallics 1997; 16: 1920
  • 13 Wilfling P, Schittelkopf K, Flock M, Herber RH, Power PP, Fischer RC. Organometallics 2015; 34: 2222
  • 14 Spikes GH, Peng Y, Fettinger JC, Power PP. Z. Anorg. Allg. Chem. 2006; 632: 1005
  • 15 McCrea-Hendrick ML, Bursch M, Gullett KL, Maurer LR, Fettinger JC, Grimme S, Power PP. Organometallics 2018; 37: 2075
  • 16 Li L, Fukawa T, Matsuo T, Hashizume D, Fueno H, Tanaka K, Tamao K. Nat. Chem. 2012; 4: 361
  • 17 Suzuki F, Nishino R, Yukimoto M, Sugamata K, Minoura M. Bull. Chem. Soc. Jpn. 2020; 93: 249
  • 18 Pu L, Olmstead MM, Power PP, Schiemenz B. Organometallics 1998; 17: 5602
  • 19 Stender M, Pu L, Power PP. Organometallics 2001; 20: 1820
  • 20 Jutzi P, Leue C. Organometallics 1994; 13: 2898
  • 21 Bonnefille E, Mazières S, Saffon N, Couret C. J. Organomet. Chem. 2009; 694: 2246
  • 22 Usher M, Protchenko AV, Rit A, Campos J, Kolychev EL, Tirfoin R, Aldridge S. Chem.–Eur. J. 2016; 22: 11 685
  • 23 Hupf E, Kaiser F, Lummis PA, Roy MMD, McDonald R, Ferguson MJ, Kühn FE, Rivard E. Inorg. Chem. 2020; 59: 1592
  • 24 Wang X, Zhu Z, Peng Y, Lei H, Fettinger JC, Power PP. J. Am. Chem. Soc. 2009; 131: 6912
  • 25 Setaka W, Sakamoto K, Kira M, Power PP. Organometallics 2001; 20: 4460
  • 26 Johnson BP, Almstätter S, Dielmann F, Bodensteiner M, Scheer M. Z. Anorg. Allg. Chem. 2010; 636: 1275
  • 27 Lei H, Guo J.-D, Fettinger JC, Nagase S, Power PP. Organometallics 2011; 30: 6316
  • 28 Pu L, Twamley B, Haubrich ST, Olmstead MM, Mork BV, Simons RS, Power PP. J. Am. Chem. Soc. 2000; 122: 650
  • 29 Hadlington TJ, Hermann M, Frenking G, Jones C. Chem. Sci. 2015; 6: 7249
  • 30 Suzuki Y, Sasamori T, Guo J.-D, Tokitoh N. Chem.–Eur. J. 2018; 24: 364
  • 31 Yao S, Zhang X, Xiong Y, Schwarz H, Driess M. Organometallics 2010; 29: 5353
  • 32 Jutzi P, Becker A, Stammler HG, Neumann B. Organometallics 1991; 10: 1647
  • 33 Davidson PJ, Harris DH, Lappert MF. J. Chem. Soc., Dalton Trans. 1976; 2268
  • 34 Hitchcock PB, Lappert MF, Miles SJ, Thorne AJ. J. Chem. Soc., Chem. Commun. 1984; 480
  • 35 Kira M, Ishida S, Iwamoto T, Ichinohe M, Kabuto C, Ignatovich L, Sakurai H. Chem. Lett. 1999; 263
  • 36 Hering-Junghans C, Andreiuk P, Ferguson MJ, McDonald R, Rivard E. Angew. Chem. Int. Ed. 2017; 56: 6272
  • 37 Wang L, Lim YS, Li Y, Ganguly R, Kinjo R. Molecules 2016; 21: 990
  • 38 Rao B, Wang L, Kinjo R. Angew. Chem. Int. Ed. 2019; 58: 231
  • 39 Tokitoh N, Manmaru K, Okazaki R. Organometallics 1994; 13: 167
  • 40 Dube JW, Graham CME, Macdonald CLB, Brown ZD, Power PP, Ragogna PJ. Chem.–Eur. J. 2014; 20: 6739
  • 41 Berthe J, Garcia JM, Ocando E, Kato T, Saffon-Merceron N, De Cózar A, Cossío FP, Baceiredo A. J. Am. Chem. Soc. 2011; 133: 15 930
  • 42 Protchenko AV, Blake MP, Schwarz AD, Jones C, Mountford P, Aldridge S. Organometallics 2015; 34: 2126
  • 43 Sugahara T, Espinosa Ferao A, Rey Planells A, Guo J.-D, Aoyama S, Igawa K, Tomooka K, Sasamori T, Hashizume D, Nagase S, Tokitoh N. Dalton Trans. 2020; 49: 7189
  • 44 Cui C, Olmstead MM, Fettinger JC, Spikes GH, Power PP. J. Am. Chem. Soc. 2005; 127: 17 530
  • 45 Wang X, Ni C, Zhu Z, Fettinger JC, Power PP. Inorg. Chem. 2009; 48: 2464
  • 46 Summerscales OT, Olmstead MM, Power PP. Organometallics 2011; 30: 3468
  • 47 Hadlington TJ, Li J, Hermann M, Davey A, Frenking G, Jones C. Organometallics 2015; 34: 3175
  • 48 Spikes GH, Peng Y, Fettinger JC, Steiner J, Power PP. Chem. Commun. (Cambridge) 2005; 6041