Campagne, J.-M.  et al.: 2025 Science of Synthesis, 2025/1: Knowledge Updates 2025/1 DOI: 10.1055/sos-SD-108-00434
Knowledge Updates 2025/1

8.1.35 Use of Organolithiums in Flow Chemistry

More Information

Book

Editors: Campagne, J.-M. ; Donohoe, T. J.; Fuerstner, A. ; Luisi, R.; Montchamp, J.-L.

Authors: Aguirre, L. S. ; Berkessel, A. ; Chen, S.-K. ; Crockett, M. P. ; Das, A. ; Didier, D. ; Fañanás-Mastral, M. ; Harnying, W. ; Jiang, D. ; Mateos-Gil, J. ; Miyagishi, H. V. ; Nagaki, A. ; Sanz, R. ; Sarmah, B. K. ; Shi, L. ; Sk, M. R. ; Sowa, S. ; Stankevič, M. ; Suárez-Pantiga, S. ; Thomas, A. A. ; Trauner, F. ; Włodarczyk, A.

Title: Knowledge Updates 2025/1

Online ISBN: 9783132459816; Book DOI: 10.1055/b000001094

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Knowledge Updates



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

Organolithium reagents are essential compounds for organic synthesis. Their potent reactivity, as both strong bases and nucleophiles, allows them to react with various organic compounds, facilitating the synthesis of desired organic molecules. However, their extremely high reactivity often results in low stability, restricting the variety of organolithium reagents that are suitable for organic synthesis. The high reactivity also impairs their chemical compatibility and selectivity, limiting the utility of organolithium reagents in the synthesis of functionalized molecules. Therefore, methodology for taming the excessive reactivity of organolithium reagents is in high demand. In this review, we discuss the use of flow microreactors as a tool to address these problems. Organolithium species, excluding heterocycles, are classified into five categories, and their generation and application using flow microreactors is comprehensively discussed. In particular, the section on aryllithium compounds provides a detailed discussion of the exploitation of unstable organolithiums and the effect of the use of flow technology on chemical compatibility and selectivity. The flow microreactors discussed herein have significantly expanded the scope of application of organolithium species.

 
  • 1 Schlosser M In: Organoalkali Chemistry Wiley Hoboken, NJ 2013; 1-222
  • 10 Science of Synthesis: Flow Chemistry in Organic Synthesis. Jamison TF, Koch G. Thieme; Stuttgart 2018.
  • 63 Takahashi Y, Ashikari Y, Takumi M, Shimizu Y, Jiang Y, Higuma R, Ishikawa S, Sakaue H, Shite I, Maekawa K, Aizawa Y, Yamashita H, Yonekura Y, Colella M, Luisi R, Takegawa T, Fujita C, Nagaki A. Eur. J. Org. Chem. 2020; 618
  • 70 Susanne F, Martin B, Aubry M, Sedelmeier J, Lima F, Sevinc S, Piccioni L, Haber J, Schenkel B, Venturoni F. Org. Process Res. Dev. 2017; 21: 1779
  • 75 Nagaki A, Ishiuchi S, Imai K, Sasatsuki K, Nakahara Y, Yoshida J.-i. React. Chem. Eng. 2017; 862
  • 89 Nagaki A, Uesugi Y, Tomida Y, Yoshida J.-i. Beilstein J. Org. Chem. 2011; 1064
  • 102 Picard B, Pérez K, Lebleu T, Vuluga D, Burel F, Harrowven DC, Chataigner I, Maddaluno J, Legros J. J. Flow Chem. 2020; 10: 139
  • 103 Pérez K, Picard B, Vuluga D, Burel F, Hreiz R, Falk L, Commenge J.-M, Nagaki A, Yoshida J.-i, Chataigner I, Maddaluno J, Legros J. Org. Process Res. Dev. 2020; 24: 787
  • 107 Kim H, Yin Z, Sakurai H, Yoshida J.-i. React. Chem. Eng. 2018; 635
  • 110 Kandasamy M, Ganesan B, Hung M.-Y, Lin W.-Y. Eur. J. Org. Chem. 2019; 3183
  • 111 Kandasamy M, Huang Y.-H, Ganesan B, Senadi GC, Lin W.-Y. Eur. J. Org. Chem. 2019; 4349
  • 113 Sagmeister P, Williams JD, Hone CA, Kappe CO. React. Chem. Eng. 2019; 1571
  • 114 Cooper E, Alcock E, Power M, McGlacken G. React. Chem. Eng. 2023; 1839