8.1. 35 Use of Organolithiums in Flow Chemistry
Book
Editors: Campagne, J.-M. ; Donohoe, T. J.; Fuerstner, A. ; Luisi, R.; Montchamp, J.-L.
Title: Knowledge Updates 2025/1
Online ISBN: 9783132459816; Book DOI: 10.1055/b000001094
1st edition © 2025 Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry
Science of Synthesis Knowledge Updates
Parent publication
Title: Science of Synthesis
DOI: 10.1055/b-00000101
Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.
Type: Multivolume Edition
Abstract

Organolithium reagents are essential compounds for organic synthesis. Their potent reactivity, as both strong bases and nucleophiles, allows them to react with various organic compounds, facilitating the synthesis of desired organic molecules. However, their extremely high reactivity often results in low stability, restricting the variety of organolithium reagents that are suitable for organic synthesis. The high reactivity also impairs their chemical compatibility and selectivity, limiting the utility of organolithium reagents in the synthesis of functionalized molecules. Therefore, methodology for taming the excessive reactivity of organolithium reagents is in high demand. In this review, we discuss the use of flow microreactors as a tool to address these problems. Organolithium species, excluding heterocycles, are classified into five categories, and their generation and application using flow microreactors is comprehensively discussed. In particular, the section on aryllithium compounds provides a detailed discussion of the exploitation of unstable organolithiums and the effect of the use of flow technology on chemical compatibility and selectivity. The flow microreactors discussed herein have significantly expanded the scope of application of organolithium species.
Key words
lithium - organolithium compounds - flow chemistry - flow microreactor - alkyllithiums - benzyllithiums - lithium carbenoids - lithium –hydrogen exchange - lithium –halogen exchange - (perfluoroalkyl)lithiums - aryllithiums - allenyllithiums - carbamoyllithiums - vinyllithiums - enolates - ynolates- 10 Science of Synthesis: Flow Chemistry in Organic Synthesis. Jamison TF, Koch G. Thieme; Stuttgart 2018.
- 16 Kremsmair A, Wilke HR, Harenberg JH, Bissinger BRG, Simon MM, Alandini N, Knochel P. Angew. Chem. Int. Ed. 2023; 62 e202214377
- 24 Colella M, Tota A, Takahashi Y, Higuma R, Ishikawa S, Degennaro L, Luisi R, Nagaki A. Angew. Chem. Int. Ed. 2020; 59: 10 924
- 25 Okamoto K, Higuma R, Muta K, Fukumoto K, Tsuchihashi Y, Ashikari Y, Nagaki A. Chem.–Eur. J. 2023; 29 e202301738
- 29 Spennacchio M, Colella M, Andresini M, Dibenedetto RS, Graziano E, Aramini A, Degennaro L, Luisi R. Chem. Commun. (Cambridge) 2023; 59: 1373
- 31 Nagaki A, Tokuoka S, Yamada S, Tomida Y, Oshiro K, Amii H, Yoshida J.-i. Org. Biomol. Chem. 2011; 9: 7559
- 45 Degennaro L, Maggiulli D, Carlucci C, Fanelli F, Romanazzi G, Luisi R. Chem. Commun. (Cambridge) 2016; 52: 9554
- 46 Feng R, Ramchandani S, Ramalingam B, Tan SWB, Li C, Teoh SK, Boodhoo K, Sharratt P. Org. Process Res. Dev. 2017; 21: 1259
- 47 Djukanovic D, Heinz B, Mandrelli F, Mostarda S, Filipponi P, Martin B, Knochel P. Chem.–Eur. J. 2021; 27: 13 977
- 51 Kleoff M, Schwan J, Boeser L, Hartmayer B, Christmann M, Sarkar B, Heretsch P. Org. Lett. 2020; 33: 902
- 52 Ichinari D, Ashikari Y, Mandai K, Aizawa Y, Yoshida J.-i, Nagaki A. Angew. Chem. Int. Ed. 2020; 59: 1567
- 57 Newby JA, Blaylock DW, Witt PM, Turner RM, Heider PL, Harji BH, Browne DL, Ley SV. Org. Process Res. Dev. 2014; 18: 1221
- 58 Newby JA, Blaylock DW, Witt PM, Pastre JC, Zacharova MK, Ley SV, Browne DL. Org. Process Res. Dev. 2014; 18: 1211
- 59 Nagaki A, Hirose K, Moriwaki Y, Mitamura K, Matsukawa K, Ishizuka N, Yoshida J.-i. Catal. Sci. Technol. 2016; 6: 4690
- 61 Hafner A, Filipponi P, Piccioni L, Meisenbach M, Schenkel B, Venturoni F, Sedelmeier J. Org. Process Res. Dev. 2016; 20: 1833
- 63 Takahashi Y, Ashikari Y, Takumi M, Shimizu Y, Jiang Y, Higuma R, Ishikawa S, Sakaue H, Shite I, Maekawa K, Aizawa Y, Yamashita H, Yonekura Y, Colella M, Luisi R, Takegawa T, Fujita C, Nagaki A. Eur. J. Org. Chem. 2020; 618
- 70 Susanne F, Martin B, Aubry M, Sedelmeier J, Lima F, Sevinc S, Piccioni L, Haber J, Schenkel B, Venturoni F. Org. Process Res. Dev. 2017; 21: 1779
- 72 Kim H, Min K.-I, Inoue K, Im DJ, Kim D.-P, Yoshida J.-i. Science (Washington, D. C.) 2016; 352: 691
- 81 Seto M, Masada S, Usutani H, Cork DG, Fukuda K, Kawamoto T. Org. Process Res. Dev. 2019; 23: 1420
- 82 Ashikari Y, Tamaki T, Kawaguchi T, Furusawa M, Yonekura Y, Ishikawa S, Takahashi Y, Aizawa Y, Nagaki A. Chem.–Eur. J. 2021; 27: 16 107
- 84 Usutani H, Tomida Y, Nagaki A, Okamoto H, Nokami T, Yoshida J.-i. J. Am. Chem. Soc. 2007; 129: 3046
- 85 Nagaki A, Tomida Y, Usutani H, Kim H, Takabayashi N, Nokami T, Okamoto H, Yoshida J.-i. Chem.–Asian J. 2007; 2: 1513
- 86 Nagaki A, Sasatsuki K, Ishiuchi S, Miuchi N, Takumi M, Yoshida J.-i. Chem.–Eur. J. 2019; 25: 4946
- 88 Nagaki A, Moriwaki Y, Haraki S, Kenmoku A, Takabayashi N, Hayashi A, Yoshida J.-i. Chem.–Asian J. 2012; 7: 1061
- 94 Di Motta S, Avellini T, Silvi S, Venturi M, Ma X, Tian H, Credi A, Negri F. Chem.–Eur. J. 2013; 19: 3131
- 100 Nagaki A, Matsuo C, Kim S, Saito K, Miyazaki A, Yoshida J.-i. Angew. Chem. Int. Ed. 2012; 51: 3245
- 102 Picard B, Pérez K, Lebleu T, Vuluga D, Burel F, Harrowven DC, Chataigner I, Maddaluno J, Legros J. J. Flow Chem. 2020; 10: 139
- 103 Pérez K, Picard B, Vuluga D, Burel F, Hreiz R, Falk L, Commenge J.-M, Nagaki A, Yoshida J.-i, Chataigner I, Maddaluno J, Legros J. Org. Process Res. Dev. 2020; 24: 787