Jiang, X. et al.: 2020 Science of Synthesis, 2019/3: Knowledge Updates 2019/3 DOI: 10.1055/sos-SD-114-00140
Knowledge Updates 2019/3

14.11.3 Selenopyranones and Benzoselenopyranones (Update 2019)

More Information

Book

Editors: Jiang, X.; Paquin, J.-F.; Terent'ev, A. ; Wang, M.

Authors: Bityukov, O.; Chen, C.; Dembitsky, V.; Dong, X.; Haufe, G.; Lee, C.-F.; Liu, H.; Terent'ev, A. ; Vil’, V. ; Yu, L.

Title: Knowledge Updates 2019/3

Print ISBN: 9783132429673; Online ISBN: 9783132429703; Book DOI: 10.1055/b-006-166044

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Knowledge Updates



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G.; Nevado Blazquez, C.; Trost, B. M.; You, S.

Type: Multivolume Edition

 

Abstract

This chapter is an update to the earlier Science of Synthesis contribution (Section 14.11) describing methods for the synthesis of selenopyranones and benzoselenopyranones. Recent interest in this area has in part been generated by the discovery that some 9H-selenoxanthen-9-ones and selenopyran in particular, exhibit very good absorption of near-infrared light, which means they have potential applications in many fields such as medicine, sensors/detectors, and catalysis.

 
  • 1 Bedics M. A., Mulhern K. R., Watson D. F., Detty M. R. J. Org. Chem. 2013; 78: 8885
  • 2 Barlow S., Brédas J.-L., Getmanenko Y. A., Gieseking R. L., Hales J. M., Kim H., Marder S. R., Perry J. W., Risko C., Zhang Y. Mater. Horiz. 2014; 1: 577
  • 3 Getmanenko Y. A., Allen T. G., Kim H., Hales J. M., Sandhu B., Fonari M. S., Suponitsky K. Y., Zhang Y., Khrustalev V. N., Matichak J. D., Timofeeva T. V., Barlow S., Chi S.-H., Perry J. W., Marder S. R. Adv. Funct. Mater. 2018; 28: 1 804 073
  • 4 Hales J. M., Matichak J., Barlow S., Ohira S., Yesudas K., Brédas J.-L., Perry J. W., Marder S. R. Science (Washington, D. C.) 2010; 327: 1485
  • 5 Pascal S., Getmanenko Y. A., Zhang Y., Davydenko I., Ngo M. H., Pilet G., Redon S., Bretonnière Y., Maury O., Ledoux-Rak I., Barlow S., Marder S. R., Andraud C. Chem. Mater. 2018; 30: 3410
  • 6 Yang W.-R., Choi Y.-S., Jeong J.-H. Org. Biomol. Chem. 2017; 15: 3074
  • 7 Naik H. R. P., Naik H. S. B., Naik T. R. R., Aravinda T., Lamani D. S., Naika H. R. Phosphorus, Sulfur Silicon Relat. Elem. 2009; 184: 2583
  • 8 Naik T. R. R., Naik H. S. B., Naik S. R. G. J. Sulfur Chem. 2007; 28: 393
  • 9 Loskutov V. A., Balina S. V., Russkikh V. V., Shelkovnikov V. V. Russ. J. Gen. Chem. (Engl. Transl.) 2015; 85: 1093
  • 10 Mandal A., Dana S., Sahoo H., Grandhi G. S., Baidya M. Org. Lett. 2017; 19: 2430
  • 11 Xu J., Zhang F., Zhang S., Zhang L., Yu X., Yan J., Song Q. Org. Lett. 2019; 21: 1112
  • 12 Alcaide B., Almendros P., Lázaro-Milla C., Delgado-Martínez P. Chem.–Eur. J. 2018; 24: 8186
  • 13 Angeli A., Trallori E., Carta F., di Cesare Mannelli L., Ghelardini C., Supuran C. T. ACS Med. Chem. Lett. 2018; 9: 947
  • 14 Del Valle D. J., Donnelly D. J., Holt J. J., Detty M. R. Organometallics 2005; 24: 3807
  • 15 Ichikawa Y., Kamiya M., Obata F., Miura M., Terai T., Komatsu T., Ueno T., Hanaoka K., Nagano T., Urano Y. Angew. Chem. Int. Ed. 2014; 53: 6772
  • 16 Piao W., Hanaoka K., Fujisawa T., Takeuchi S., Komatsu T., Ueno T., Terai T., Tahara T., Nagano T., Urano Y. J. Am. Chem. Soc. 2017; 139: 13 713
  • 17 Brennan N. K., Donnelly D. J., Detty M. R. J. Org. Chem. 2003; 68: 3344
  • 18 Iwasaki M., Tsuchiya Y., Nakajima K., Nishihara Y. Org. Lett. 2014; 16: 4920
  • 19 Gibson S. L., Holt J. J., Ye M., Donnelly D. J., Ohulchanskyy T. Y., You Y., Detty M. R. Bioorg. Med. Chem. 2005; 13: 6394