Campagne, J.-M.  et al.: 2025 Science of Synthesis, 2025/1: Knowledge Updates 2025/1 DOI: 10.1055/sos-SD-115-01884
Knowledge Updates 2025/1

15.3.6 Quinoline 1-Oxides and Quinolinium Salts (Update 2025)

More Information

Book

Editors: Campagne, J.-M. ; Donohoe, T. J.; Fuerstner, A. ; Luisi, R.; Montchamp, J.-L.

Authors: Aguirre, L. S. ; Berkessel, A. ; Chen, S.-K. ; Crockett, M. P. ; Das, A. ; Didier, D. ; Fañanás-Mastral, M. ; Harnying, W. ; Jiang, D. ; Mateos-Gil, J. ; Miyagishi, H. V. ; Nagaki, A. ; Sanz, R. ; Sarmah, B. K. ; Shi, L. ; Sk, M. R. ; Sowa, S. ; Stankevič, M. ; Suárez-Pantiga, S. ; Thomas, A. A. ; Trauner, F. ; Włodarczyk, A.

Title: Knowledge Updates 2025/1

Online ISBN: 9783132459816; Book DOI: 10.1055/b000001094

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Knowledge Updates



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

Quinoline 1-oxides and quinolinium salts are used extensively as synthetic intermediates for various organic transformations. They are also found as privileged cores in various bioactive molecules. Therefore, there has been a continuous effort focused on the synthesis of such compounds. In this review, recent synthetic protocols to afford such compounds are compiled, with literature reports from 2005 to 2023 included. In addition to the most common oxidation routes from the parent quinoline moiety, including biocatalytic methods, this contribution also features synthetic routes using different starting materials, often based on nitroarene precursors. Synthetic protocols for the preparation of quinolinium salts based on addition or annulation strategies are also covered.

 
  • 1 Capraro H.-G, Furet P, Garcia-Echeverria C, Stauffer F. WO 2005 054 238, 2005
  • 3 Mouaddib A, Joseph B, Hasnaoui A, Mérour J.-Y. Synthesis 2000; 549
  • 26 Campeau L.-C, Stuart D, Leclerc J, Bertrand-Laperle M, Villemure E, Sun H, Lasserre S, Guimond N, Lecavallier M, Fagnou K. J. Am. Chem. Soc. 2009; 131: 3291
  • 59 Lehecq A, Rousée K, Schneider C, Levacher V, Hoarau C, Pannecoucke X, Bouillon J.-P, Couve-Bonnaire S. Eur. J. Org. Chem. 2017; 3049
  • 85 Jain SL, Joseph JK, Sain B. Synlett 2006; 2661
  • 98 Prasad MR, Kamalakar G, Madhavi G, Kulkarni SJ, Raghavan KV. Chem. Commun. (Cambridge) 2000; 1577
  • 104 Gonçalves DAF, Alvim RPR, Bicalho HA, Peres AM, Binatti I, Batista PFR, Teixeira LS, Resende RR, Lorençon E. New J. Chem. 2018; 42: 5720
  • 115 Busetti A, Crawford DE, Earle MJ, Gilea MA, Gilmore BF, Gorman SP, Laverty G, Lowry AF, McLaughlin M, Seddon KR. Green Chem. 2010; 12: 420
  • 120 Mel’nik MV, Turov AV, Novitskii ZL, Stetskiv AO, Bodnarchuk OV, Ganushchak NI. Russ. J. Gen. Chem. (Engl. Transl.) 2006; 76: 634
  • 122 Cheng L.-C, Chen W.-C, Santhoshkumar R, Chao T.-H, Cheng M.-J, Cheng C.-H. Eur. J. Org. Chem. 2020; 2116
  • 128 Quast H, Gelléri A. Justus Liebigs Ann. Chem. 1975; 929
  • 131 Sweet JS, Rajkumar S, Dingwall P, Knipe PC. Eur. J. Org. Chem. 2021; 3980
  • 132 Malinak D, Dolezal R, Marek J, Salajkova S, Soukup O, Vejsova M, Korabecny J, Honegr J, Penhaker M, Musilek K, Kuca K. Bioorg. Med. Chem. Lett. 2014; 24: 5238