Christmann, M. et al.: 2020 Science of Synthesis, 2020/2: Knowledge Updates 2020/2 DOI: 10.1055/sos-SD-116-01265
Knowledge Updates 2020/2

16.16.5 Phenazines (Update 2020)

Weitere Informationen

Buch

Herausgeber: Christmann, M.; Huang, Z.; Joule, J. A.; Li, C.-J.; Li, J. J.; Marschner, C.; Petersson, E. J.; Reissig, H.-U.; Terent'ev, A. O.

Autoren: Ambhaikar, N. B.; Campagne, J. M.; Celik, I. E.; Dembitsky, V. M.; Graham, M. A.; Holzschneider, K.; Jaschinski, M.; Kipke, W.; Kirsch, S. F.; Kunz, K.; Leclerc, E.; Li, G.; Li, Z.; Makow, J.; Müller, T.; Ochoa, C. I.; Ramirez y Medina, I.-M.; Rayner, C. M.; Staubitz, A.; Sun, X.-L.; Szostak, M.; Tambar, U. K.; Tian, T.; Tong, M. L.; Wang, X.-Y.; Yaremenko, I. A.; Yoshikai, N.

Titel: Knowledge Updates 2020/2

Print ISBN: 9783132435612; Online ISBN: 9783132435636; Buch-DOI: 10.1055/b000000103

Fachgebiete: Organische Chemie;Chemische Reaktionen, Katalyse;Organometallchemie;Chemische Labormethoden, Stöchiometrie

Science of Synthesis Knowledge Updates



Übergeordnete Publikation

Titel: Science of Synthesis

DOI: 10.1055/b-00000101

Reihenherausgeber: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Typ: Mehrbändiges Werk

 


Abstract

Phenazines are an interesting class of nitrogen-containing heterocycles present in many natural products. This update describes the construction of phenazines through some newer practical synthetic methods that have been reported since the first review on phenazines in Science of Synthesis (Section 16.16). For the most part, standard ways of synthesizing phenazine and its derivatives have employed traditional approaches or their variations along the lines of the Wohl–Aue reaction and the Beirut reaction. The current account focuses on modern synthetic tools to construct the phenazine core and includes some of the newer approaches, with recent key methods that have been developed between 2004 and 2019.

 
  • 1 Beifuss U, Tietze M. Top. Curr. Chem. 2005; 244: 77
  • 2 Laursen JB, Nielsen J. Chem. Rev. 2004; 104: 1663
  • 3 Turner JM, Messenger AJ. Adv. Microb. Physiol. 1986; 27: 211
  • 4 Pierson III LS, Pierson EA. Appl. Microbiol. Biotechnol. 2010; 86: 1659
  • 5 Borrero NV, Bai F, Perez C, Duong BQ, Rocca JR, Jin S, Huigens III RW. Org. Biomol. Chem. 2014; 12: 881
  • 6 Sheng J, He R, Xue J, Wu C, Qiao J, Chen C. Org. Lett. 2018; 20: 4458
  • 7 Wang C, Wang J, Li P.-Z, Gao J, Tan SY, Xiong W.-W, Hu B, Lee PS, Zhao Y, Zhang Q. Chem.–Asian J. 2014; 9: 779
  • 8 Ogata T, Yamamoto Y, Wada Y, Murakoshi K, Kusaba M, Nakashima N, Ishida A, Takamuku S, Yanagida S. J. Phys. Chem. 1995; 99: 11 916
  • 9 Gu P.-Y, Zhao Y, He J.-H, Zhang J, Wang C, Xu Q.-F, Lu J.-M, Sun XW, Zhang Q. J. Org. Chem. 2015; 80: 3030
  • 10 Shi J, Chen J, Chai Z, Wang H, Tang R, Fan K, Wu M, Han H, Qin J, Peng T, Li Q, Li Z. J. Mater. Chem. 2012; 22: 18 830
  • 11 Richard CA, Pan Z, Parthasarathy A, Arroyave FA, Estrada LA, Schanze KS, Reynolds JR. J. Mater. Chem. A 2014; 2: 9866
  • 12 Zhang G, Zhang H, Wang X, Li C, Huang H, Yin D. Molecules 2011; 16: 6985
  • 13 Browne SG, Hogerzeil LM. Lepr. Rev. 1962; 33: 6
  • 14 Van Rensburg CEJ, Van Staden AM, Anderson R. Cancer Research 1993; 53: 318
  • 15 Yew WW, Chau CH. Monaldi Arch. Chest Dis. 1996; 51: 394
  • 16 Polson MIJ, Howell SL, Flood AH, Burrell AK, Blackman AG, Gordon KC. Polyhedron 2004; 23: 1427
  • 17 Kaafarani BR, Lucas LA, Wex B, Jabbour GE. Tetrahedron Lett. 2007; 48: 5995
  • 18 Tada M. Bull. Chem. Soc. Jpn. 1974; 47: 1803
  • 19 Vivian DL. J. Org. Chem. 1956; 21: 565
  • 20 Vivian DL. J. Am. Chem. Soc. 1951; 73: 457
  • 21 Vivian DL, Hogart RM, Belkin M. J. Org. Chem. 1961; 26: 112
  • 22 Tada M. Bull. Chem. Soc. Jpn. 1978; 51: 3093
  • 23 Pachter IJ, Kloetzel MC. J. Am. Chem. Soc. 1952; 74: 971
  • 24 Tada M. Bull. Chem. Soc. Jpn. 1975; 48: 363
  • 25 Guirado A, Cerezo A, Andreu R, López Sánchez JI, Bautista D. Tetrahedron 2004; 60: 6747
  • 26 De Buyck L, Vanslembrouck J, De Kimpe N, Verhe R, Schamp N. Bull. Soc. Chim. Belg. 1984; 93: 913
  • 27 Koepf M, Lee SH, Brennan BJ, Méndez-Hernández DD, Batista VS, Brudvig GW, Crabtree RH. J. Org. Chem. 2015; 80: 9881
  • 28 Trost BM. Acc. Chem. Res. 2002; 35: 695
  • 29 Sheldon RA, Arends IWCE, ten Brink G.-J, Dijksman A. Acc. Chem. Res. 2002; 35: 774
  • 30 Punniyamurthy T, Velusamy S, Iqbal J. Chem. Rev. 2005; 105: 2329
  • 31 Hill CL. Angew. Chem. Int. Ed. 2004; 43: 402
  • 32 Stahl SS. Angew. Chem. Int. Ed. 2004; 43: 3400
  • 33 Do H.-Q, Daugulis O. J. Am. Chem. Soc. 2007; 129: 12 404
  • 34 Chen X, Hao X.-S, Goodhue CE, Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 6790
  • 35 Do H.-Q, Daugulis O. J. Am. Chem. Soc. 2008; 130: 1128
  • 36 Borduas N, Powell DA. J. Org. Chem. 2008; 73: 7822
  • 37 Monguchi D, Fujiwara T, Furukawa H, Mori A. Org. Lett. 2009; 11: 1607
  • 38 Zhao L, Li C.-J. Angew. Chem. Int. Ed. 2008; 47: 7075
  • 39 Strieter ER, Bhayana B, Buchwald SL. J. Am. Chem. Soc. 2009; 131: 78
  • 40 Yotphan S, Bergman RG, Ellman JA. Org. Lett. 2009; 11: 1511
  • 41 Ackermann L, Potukuchi HK, Landsberg D, Vicente R. Org. Lett. 2008; 10: 3081
  • 42 Li C.-J. Acc. Chem. Res. 2009; 42: 335
  • 43 Brasche G, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 1932
  • 44 Meesala R, Nagarajan R. Synlett 2010; 2808
  • 45 Satoh T, Miura M. Chem.–Eur. J. 2010; 16: 11 212
  • 46 Wencel-Delord J, Dröge T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
  • 47 Song G, Wang F, Li X. Chem. Soc. Rev. 2012; 41: 3651
  • 48 Lian Y, Hummel JR, Bergman RG, Ellman JA. J. Am. Chem. Soc. 2013; 135: 12 548
  • 49 Yu B.-C, Shirai Y, Tour JM. Tetrahedron 2006; 62: 10 303
  • 50 Merino E. Chem. Soc. Rev. 2011; 40: 3835
  • 51 Bouffard J, Swager TM. Macromolecules 2008; 41: 5559
  • 52 Balicki R, Cybulski M, Maciejewski G. Synth. Commun. 2003; 33: 4137
  • 53 Roy P, Ghorai BK. Beilstein J. Org. Chem. 2010; 6: 52
  • 54 Muci AR, Buchwald SL. Top. Curr. Chem. 2002; 219: 131
  • 55 Hartwig JF, In: Modern Arene Chemistry Astruc D. Wiley VCH Weinheim 2002; 107
  • 56 Wolfe JP, Wagaw S, Marcoux J.-F, Buchwald SL. Acc. Chem. Res. 1998; 31: 805
  • 57 Hartwig JF. Acc. Chem. Res. 1998; 31: 852
  • 58 Tietze M, Iglesias A, Merisor E, Conrad J, Klaiber I, Beifuss U. Org. Lett. 2005; 7: 1549
  • 59 Abken H.-J, Tietze M, Brodersen J, Bäumer S, Beifuss U, Deppenmeier U. J. Bacteriol. 1998; 180: 2027
  • 60 Beifuss U, Tietze M, Bäumer S, Deppenmeier U. Angew. Chem. Int. Ed. 2000; 39: 2470
  • 61 Wróbel Z, Plichta K, Kwast A. Tetrahedron 2017; 73: 3147
  • 62 Gao Q, Liu S, Wu X, Wu A. Org. Lett. 2014; 16: 4582
  • 63 He Z, Li H, Li Z. J. Org. Chem. 2010; 75: 4636
  • 64 Fra L, Millán A, Souto JA, Muñiz K. Angew. Chem. Int. Ed. 2014; 53: 7349
  • 65 Kumar S, Mujahid M, Verma AK. Org. Biomol. Chem. 2017; 15: 4686
  • 66 Laha JK, Tummalapalli KSS, Gupta A. Org. Lett. 2014; 16: 4392
  • 67 Laha JK, Tummalapalli KSS, Gupta A. Eur. J. Org. Chem. 2013; 8330
  • 68 Ishizumi K, Mori K, Inaba S, Yamamoto H. Chem. Pharm. Bull. 1975; 23: 2169
  • 69 Black DSC, Rothnie NE. Aust. J. Chem. 1983; 36: 1149