Campagne, J.-M.  et al.: 2024 Science of Synthesis, 2024/1: Knowledge Updates 2024/1 DOI: 10.1055/sos-SD-120-00150
Knowledge Updates 2024/1

20.5.1.7.16 Catalytic α-Arylation of Alkyl Alkanoates

More Information

Book

Editors: Campagne, J.-M. ; Donohoe, T. J.; Fürstner, A. ; Jiang, X. ; Wang, M.

Authors: Cheng, J. ; Chowdhury, S. ; Harris, P. A. ; Li, X. ; Liu, M. ; Liao, L.; Song, Q. ; Tang, R.-Y. ; Tobrman, T. ; Wang, L.; Wu, X.-F. ; Ying, J. ; Yu, J.-S. ; Zhang, Y.

Title: Knowledge Updates 2024/1

Online ISBN: 9783132457058; Book DOI: 10.1055/b000000967

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Laboratory Techniques, Stoichiometry;Organometallic Chemistry

Science of Synthesis Knowledge Updates



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

α-Aryl carboxylic esters are important motifs or precursors in a wide variety of drugs, bioactive natural products, and pharmacologically active compounds. This chapter is an update to enrich the original Science of Synthesis chapter dedicated to the synthesis of alkyl alkanoates “Synthesis with Retention of the Functional Group” (Section 20.5.1.7). The current review focuses on recent advances in the catalytic α-arylation of alkyl alkanoates, and describes methods for the synthesis of α-aryl carboxylic compounds reported in the period 2001–2022. Seven main approaches are introduced: α-arylations of alkyl esters or their enolates, α-arylations of Reformatsky reagents with aryl halides, α-arylations of silyl ketene acetals, α-arylations of α-halo esters, α-arylations of α-diazo esters, decarboxylative or deacetylative α-arylation of β-carbonyl esters, and reductive C—O bond arylation of oxalates derived from α-hydroxy esters.

 
  • 1 Hao Y.-J, Hu X.-S, Zhou Y, Zhou J, Yu J.-S. ACS Catal. 2020; 10: 955
  • 2 Mitchell JA, Akarasereenont P, Thiemermann C, Flower RJ, Vane JR. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 11 693
  • 3 Moradi WA, Buchwald SL. J. Am. Chem. Soc. 2001; 123: 7996
  • 4 Lee S, Beare NA, Hartwig JF. J. Am. Chem. Soc. 2001; 123: 8410
  • 5 Jørgensen M, Lee S, Liu X.-X, Wolkowski JP, Hartwig JF. J. Am. Chem. Soc. 2002; 124: 12 557
  • 6 He Z.-T, Hartwig JF. Nat. Commun. 2019; 10: 4083
  • 7 Spielvogel DJ, Buchwald SL. J. Am. Chem. Soc. 2002; 124: 3500
  • 8 Bella M, Kobbelgaard S, Jørgensen KA. J. Am. Chem. Soc. 2005; 127: 3670
  • 9 Shirakawa S, Yamamoto K, Tokuda T, Maruoka K. Asian J. Org. Chem. 2014; 3: 433
  • 10 Shirakawa S, Yamamoto K, Muruoka K. Angew. Chem. Int. Ed. 2015; 54: 838
  • 11 Hennessy EJ, Buchwald SL. Org. Lett. 2002; 4: 269
  • 12 Xie X, Cai G, Ma D. Org. Lett. 2005; 7: 4693
  • 13 Yip SF, Cheung HY, Zhou Z.-Y, Kwong F.-Y. Org. Lett. 2007; 9: 3469
  • 14 Yang JQ, Wu GJ, He YP, Han FS. Chem. Res. Chin. Univ. 2018; 34: 727
  • 15 Xie X, Chen Y, Ma D. J. Am. Chem. Soc. 2006; 128: 16 050
  • 16 Hosamani B, Ribeiro MF, da Silva Júnior EN, Namboothiri INN. Org. Biomol. Chem. 2016; 14: 6913
  • 17 Yu J.-S. Synlett 2014; 25: 2377
  • 18 Alemán J, Richter B, Jørgensen KA. Angew. Chem. Int. Ed. 2007; 46: 5515
  • 19 Liu Y, Li J, Ye X, Zhao X, Jiang Z. Chem. Commun. (Cambridge) 2016; 52: 13 955
  • 20 Wang C, Chen X.-H, Zhou S.-M, Gong L.-Z. Chem. Commun. (Cambridge) 2010; 46: 1275
  • 21 Hama T, Liu X.-X, Culkin DA, Hartwig JF. J. Am. Chem. Soc. 2003; 125: 11 176
  • 22 Abdiaj I, Huck L, Mateo JM, de la Hoz A, Gomez MV, Diáz-Ortiz A, Alcázar J. Angew. Chem. Int. Ed. 2018; 57: 13 231
  • 23 Greszler SN, Halvorsen GT, Voight EA. Org. Lett. 2017; 19: 2490
  • 24 Li B, Luo B, Blakemore CA, Smith AC, Widlicka DW, Berritt S, Tang W. Org. Lett. 2021; 23: 6439
  • 25 Li B, Li T, Aliyu MA, Li Z, Tang W. Angew. Chem. Int. Ed. 2019; 58: 11 355
  • 26 Huang Z, Liu Z, Zhou J. J. Am. Chem. Soc. 2011; 133: 15 882
  • 27 Kobayashi K, Yamamoto Y, Miyaura N. Organometallics 2011; 30: 6323
  • 28 Yang J, Zhou J. Org. Chem. Front. 2014; 1: 365
  • 29 Huang Z, Chen Z, Lim LH, Quang GCP, Hirao H, Zhou J. Angew. Chem. Int. Ed. 2013; 52: 5807
  • 30 Bigot A, Williamson AE, Gaunt MJ. J. Am. Chem. Soc. 2011; 133: 13 778
  • 31 Harvey JS, Simonovich SP, Jamison CR, MacMillan DWC. J. Am. Chem. Soc. 2011; 133: 13 782
  • 32 Margarita E.-C, Licini G, Orlandi M. J. Am. Chem. Soc. 2021; 143: 3289
  • 33 Fujikawa K, Fujioka Y, Kobayashi A, Amii H. Org. Lett. 2011; 13: 5560
  • 34 Gooßen LJ. Chem. Commun. (Cambridge) 2001; 669
  • 35 Zimmermann B, Dzik WI, Himmler T, Goossen LJ. J. Org. Chem. 2011; 76: 8107
  • 36 Liu X, Deng M. Chem. Commun. (Cambridge) 2002; 622
  • 37 Molander GA, Traister KM, Barcellos T. J. Org. Chem. 2013; 78: 4123
  • 38 Liu C, He C, Shi W, Chen M, Lei A. Org. Lett. 2007; 9: 5601
  • 39 Su Y.-M, Feng G.-S, Wang Z.-Y, Lan Q, Wang X.-S. Angew. Chem. Int. Ed. 2015; 54: 6003
  • 40 Lundin PM, Fu GC. J. Am. Chem. Soc. 2010; 132: 11 027
  • 41 Iwamoto T, Okuzono C, Adak L, Jin M, Nakamura M. Chem. Commun. (Cambridge) 2019; 55: 1128
  • 42 Strotman NA, Sommer S, Fu GC. Angew. Chem. Int. Ed. 2007; 46: 3556
  • 43 Dai X, Strotman NA, Fu GC. J. Am. Chem. Soc. 2008; 130: 3302
  • 44 Jin M, Nakamura M. Chem. Lett. 2011; 40: 1012
  • 45 Jin M, Adak L, Nakamura M. J. Am. Chem. Soc. 2015; 137: 7128
  • 46 Mao J, Liu F, Wang M, Wu L, Zheng B, Liu S, Zhong J, Bian Q, Walsh PJ. J. Am. Chem. Soc. 2014; 136: 17 662
  • 47 Araki K, Inoue M. Tetrahedron 2013; 69: 3913
  • 48 Lorion MM, Koch V, Nieger M, Chen H.-Y, Lei A, Bräse S, Cossy J. Chem.–Eur. J. 2020; 26: 13 163
  • 49 Liu F, Zhong J, Zhou Y, Gao Z, Walsh PJ, Wang X, Ma S, Hou S, Liu S, Wang M, Wang M, Bian Q. Chem.–Eur. J. 2018; 24: 2059
  • 50 Durandetti M, Gosmini C, Périchon J. Tetrahedron 2007; 63: 1146
  • 51 Chen TQ, MacMillan DWC. Angew. Chem. Int. Ed. 2019; 58: 14 584
  • 52 Guan H, Zhang Q, Walsh PJ, Mao J. Angew. Chem. Int. Ed. 2020; 59: 5172
  • 53 Peng C, Zhang W, Yan G, Wang J. Org. Lett. 2009; 11: 1667
  • 54 Wu G, Deng Y, Wu C, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2014; 53: 10 510
  • 55 Yu Z, Ma B, Chen M, Wu H.-H, Liu L, Zhang Z. J. Am. Chem. Soc. 2014; 136: 6904
  • 56 Xi Y, Su Y, Yu Z, Dong B, McClain EJ, Lan Y, Shi X. Angew. Chem. Int. Ed. 2014; 53: 9817
  • 57 Yu Z, Li Y, Shi J, Ma B, Liu L, Zhang Z. Angew. Chem. Int. Ed. 2016; 55: 14 807
  • 58 Xu B, Li M.-L, Zuo X.-D, Zhu S.-F, Zhou Q.-L. J. Am. Chem. Soc. 2015; 137: 8700
  • 59 Feng Y.-S, Wu W, Xu Z.-Q, Li Y, Li M, Xu H.-J. Tetrahedron 2012; 68: 2113
  • 60 Moon PJ, Yin S, Lundgren RJ. J. Am. Chem. Soc. 2016; 138: 13 826
  • 61 Cheng F, Chen T, Huang Y.-Q, Li J.-W, Zhou C, Xiao X, Chen F.-E. Org. Lett. 2022; 24: 115
  • 62 Ke Y, He C, Liu H, Xu H, Lei A. Chem. Commun. (Cambridge) 2013; 49: 6767
  • 63 Gao M, Sun D, Gong H. Org. Lett. 2019; 21: 1645