Wang, M.  et al.: Science of Synthesis: Knowledge Updates 2024/3 DOI: 10.1055/sos-SD-120-00326

20.2.1.9 Synthesis of Alkanoic Acids Using Carbon Dioxide through Catalytic C—C Bond-Forming Reactions

Weitere Informationen

Buch

Herausgeber: Wang, M. ; Drabowicz, J. ; Jiang, X. ; Campagne, J.-M.

Autoren: Gulder, T. ; Kretzschmar, M. ; Marciniszyn, J. P.; Kiełbasiński, P. ; Kwiatkowska, M. ; Zhu, H. ; Fan, Q. ; Mita, T. ; Rawat, V. K. ; Favre-Réguillon, A. ; Leclerc, E.

Titel: Knowledge Updates 2024/3

Online ISBN: 9783132457089; Buch-DOI: 10.1055/b000000969

Fachgebiete: Organische Chemie;Chemische Reaktionen, Katalyse;Organometallchemie;Chemische Labormethoden, Stöchiometrie

Science of Synthesis Knowledge Updates



Übergeordnete Publikation

Titel: Science of Synthesis

DOI: 10.1055/b-00000101

Reihenherausgeber: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Typ: Mehrbändiges Werk

 


Abstract

In recent years, there has been growing interest in utilizing carbon dioxide as a feedstock for organic synthesis due to its abundance, low cost, and environmentally benign nature, with a particular focus on the catalytic synthesis of alkanoic acids from readily available starting materials via C–C bond formation. This review provides a comprehensive overview of this approach, covering the synthesis of alkanoic acids from alkyl (pseudo)halides, alkyl alcohol derivatives, isolable organometallic species, alkenes, and alkanes via C(sp3)–H bond activation. The versatility and practicality demonstrated for these methods underscores the significance of this approach in accessing valuable carboxylic acid derivatives from carbon dioxide.

 
  • 1 Folest J.-C, Duprilot J.-M, Perichon J, Robin Y, Devynck J. Tetrahedron Lett. 1985; 26: 2633
  • 2 León T, Correa A, Martin R. J. Am. Chem. Soc. 2013; 135: 1221
  • 3 Chen B.-L, Zhu H.-W, Xiao Y, Sun Q.-L, Wang H, Lu J.-X. Electrochem. Commun. 2014; 42: 55
  • 4 Zhang S, Chen W.-Q, Yu A, He L.-N. ChemCatChem 2015; 7: 3972
  • 5 Börjesson M, Moragas T, Martin R. J. Am. Chem. Soc. 2016; 138: 7504
  • 6 Bazzi S, Schulz E, Mellah M. Org. Lett. 2019; 21: 10 033
  • 7 Wu L.-X, Zhao Y.-G, Guan Y.-B, Wang H, Lan Y.-C, Wang H, Lu J.-X. RSC Adv. 2019; 9: 32 628
  • 8 Ang NWJ, Oliveira JCA, Ackermann L. Angew. Chem. Int. Ed. 2020; 59: 12 842
  • 9 Wu L.-X, Deng F.-J, Wu L, Wang H, Chen T, Guan Y.-B, Lu J.-X. New J. Chem. 2021; 45: 13 137
  • 10 Wang L, Li T, Perveen S, Zhang S, Wang X, Ouyang Y, Li P. Angew. Chem. Int. Ed. 2022; 61: e202213943
  • 11 Liu Y, Cornella J, Martin R. J. Am. Chem. Soc. 2014; 136: 11 212
  • 12 Moragas T, Martin R. Synthesis 2016; 48: 2816
  • 13 Juliá-Hernández F, Moragas T, Cornella J, Martin R. Nature (London) 2017; 545: 84
  • 14 Meng Q.-Y, Wang S, König B. Angew. Chem. Int. Ed. 2017; 56: 13 426
  • 15 Sahoo B, Bellotti P, Juliá-Hernández F, Meng Q.-Y, Crespi S, König B, Martin R. Chem.–Eur. J. 2019; 25: 9001
  • 16 Sun G.-Q, Zhang W, Liao L.-L, Li L, Nie Z.-H, Wu J.-G, Zhang Z, Yu D.-G. Nat. Commun. 2021; 12: 7086
  • 17 Correa A, León T, Martin R. J. Am. Chem. Soc. 2014; 136: 1062
  • 18 Moragas T, Cornella J, Martin R. J. Am. Chem. Soc. 2014; 136: 17 702
  • 19 Jiao K.-J, Li Z.-M, Xu X.-T, Zhang L.-P, Li Y.-Q, Zhang K, Mei T.-S. Org. Chem. Front. 2018; 5: 2244
  • 20 Jin Y, Toriumi N, Iwasawa N. ChemSusChem 2022; 15: e202102095
  • 21 Mita T, Higuchi Y, Sato Y. Chem.–Eur. J. 2015; 21: 16 391
  • 22 van Gemmeren M, Börjesson M, Tortajada A, Sun S.-Z, Okura K, Martin R. Angew. Chem. Int. Ed. 2017; 56: 6558
  • 23 Chen Y.-G, Shuai B, Ma C, Zhang X.-J, Fang P, Mei T.-S. Org. Lett. 2017; 19: 2969
  • 24 Fan Z, Chen S, Zou S, Xi C. ACS Catal. 2022; 12: 2781
  • 25 Ran C.-K, Niu Y.-N, Song L, Wei M.-K, Cao Y.-F, Luo S.-P, Yu Y.-M, Liao L.-L, Yu D.-G. ACS Catal. 2022; 12: 18
  • 26 Shi M, Nicholas KM. J. Am. Chem. Soc. 1997; 119: 5057
  • 27 Johansson R, Wendt OF. Dalton Trans. 2007; 488
  • 28 Yeung CS, Dong VM. J. Am. Chem. Soc. 2008; 130: 7826
  • 29 Ochiai H, Jang M, Hirano K, Yorimitsu H, Oshima K. Org. Lett. 2008; 10: 2681
  • 30 Kobayashi K, Kondo Y. Org. Lett. 2009; 11: 2035
  • 31 Metzger A, Bernhardt S, Manolikakes G, Knochel P. Angew. Chem. Int. Ed. 2010; 49: 4665
  • 32 Hruszkewycz DP, Wu J, Hazari N, Incarvito CD. J. Am. Chem. Soc. 2011; 133: 3280
  • 33 Wu J, Hazari N. Chem. Commun. (Cambridge) 2011; 47: 1069
  • 34 Duong HA, Huleatt PB, Tan Q.-W, Shuying EL. Org. Lett. 2013; 15: 4034
  • 35 Williams CM, Johnson JB, Rovis T. J. Am. Chem. Soc. 2008; 130: 14 936
  • 36 Ohishi T, Zhang L, Nishiura M, Hou Z. Angew. Chem. Int. Ed. 2011; 50: 8114
  • 37 Ohmiya H, Tanabe M, Sawamura M. Org. Lett. 2011; 13: 1086
  • 38 Greenhalgh MD, Thomas SP. J. Am. Chem. Soc. 2012; 134: 11 900
  • 39 Ostapowicz TG, Schmitz M, Krystof M, Klankermayer J, Leitner W. Angew. Chem. Int. Ed. 2013; 52: 12 119
  • 40 Wu L, Liu Q, Fleischer I, Jackstell R, Beller M. Nat. Commun. 2014; 5: 3091
  • 41 Hayashi C, Hayashi T, Kikuchi S, Yamada T. Chem. Lett. 2014; 43: 565
  • 42 Hayashi C, Hayashi T, Yamada T. Bull. Chem. Soc. Jpn. 2015; 88: 862
  • 43 Shao P, Wang S, Chen C, Xi C. Org. Lett. 2016; 18: 2050
  • 44 Kawashima S, Aikawa K, Mikami K. Eur. J. Org. Chem. 2016; 3166
  • 45 Butcher TW, McClain EJ, Hamilton TG, Perrone TM, Kroner KM, Donohoe GC, Akhmedov NG, Petersen JL, Popp BV. Org. Lett. 2016; 18: 6428
  • 46 Juhl M, Laursen SLR, Huang Y, Nielsen DU, Daasbjerg K, Skrydstrup T. ACS Catal. 2017; 7: 1392 ACS Catal. 2017; 7: 2247
  • 47 Murata K, Numasawa N, Shimomaki K, Takaya J, Iwasawa N. Chem. Commun. (Cambridge) 2017; 53: 3098
  • 48 Yatham VR, Shen Y, Martin R. Angew. Chem. Int. Ed. 2017; 56: 10 915
  • 49 Seo H, Liu A, Jamison TF. J. Am. Chem. Soc. 2017; 139: 13 969
  • 50 Ye J.-H, Miao M, Huang H, Yan S.-S, Yin Z.-B, Zhou W.-J, Yu D.-G. Angew. Chem. Int. Ed. 2017; 56: 15 416
  • 51 Meng Q.-Y, Wang S, Huff GS, König B. J. Am. Chem. Soc. 2018; 140: 3198
  • 52 Cai L, Fu L, Zhou C, Gao Y, Li S, Li G. Green Chem. 2020; 22: 7328
  • 53 Knowlden SW, Popp BV. Organometallics 2022; 41: 1883
  • 54 Mita T, Michigami K, Sato Y. Org. Lett. 2012; 14: 3462
  • 55 Masuda Y, Ishida N, Murakami M. J. Am. Chem. Soc. 2015; 137: 14 063
  • 56 Ishida N, Masuda Y, Uemoto S, Murakami M. Chem.–Eur. J. 2016; 22: 6524
  • 57 Ueno A, Takimoto M, Hou Z. Org. Biomol. Chem. 2017; 15: 2370
  • 58 Michigami K, Mita T, Sato Y. J. Am. Chem. Soc. 2017; 139: 6094
  • 59 Seo H, Katcher MH, Jamison TF. Nat. Chem. 2017; 9: 453
  • 60 Meng Q.-Y, Schirmer TE, Berger AL, Donabauer K, König B. J. Am. Chem. Soc. 2019; 141: 11 393
  • 61 Ishida N, Masuda Y, Imamura Y, Yamazaki K, Murakami M. J. Am. Chem. Soc. 2019; 141: 19 611
  • 62 Song L, Fu D.-M, Chen L, Jiang Y.-X, Ye J.-H, Zhu L, Lan Y, Fu Q, Yu D.-G. Angew. Chem. Int. Ed. 2020; 59: 21 121