Christmann, M. et al.: 2020 Science of Synthesis: Knowledge Updates 2020/2 DOI: 10.1055/sos-SD-121-00059
Knowledge Updates 2020/2

21.1.8 Synthesis of Amides by Transamidation and Amidation of Activated Amides and Esters

More Information

Book

Editors: Christmann, M.; Huang, Z.; Joule, J. A.; Li, C.-J.; Li, J.; Marschner, C.; Petersson, E. J.; Reißig, H.-U.; Schaumann, E.; Terent'ev, A.

Authors: Ambhaikar, N.; Campagne, J.-M.; Celik, I.; Dembitsky, V.; Graham, M.; Holzschneider, K.; Jaschinski, M.; Kipke, W.; Kirsch, S.; Kunz, K.; Leclerc, E.; Li, G.; Li, Z.; Makow, J.; Müller, T.; Ochoa, C. I.; Ramirez y Medina, I.-M. .; Rayner, C. M.; Staubitz, A.; Sun, X.-L.; Szostak, M.; Tambar, U. K.; Tian, T.; Tong, M.; Wang, X.-Y.; Yaremenko, I.; Yoshikai, N.

Title: Knowledge Updates 2020/2

Print ISBN: 9783132435612; Online ISBN: 9783132435636; Book DOI: 10.1055/b000000103

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Knowledge Updates



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G.; Nevado, C.; Trost, B. M.; You, S.

Type: Multivolume Edition

 

Abstract

This chapter provides a summary of the recent advances in direct transamidation and amidation reactions of activated amides and esters via transition-metal-catalyzed and transition-metal-free C(acyl)-N and C(acyl)-O bond cleavage as a new disconnection for the synthesis of amide bonds.

 
  • 1 Pattabiraman, V. R., Bode, J. W.. Nature (London). 2011; 480: 471
  • 2 Carey, J. S., Laffan, D., Thomson, C., Williams, M. T.. Org. Biomol. Chem.. 2006; 4: 2337
  • 3 Greenberg, A., Breneman, C. M., Liebman, J. F.. The Amide Linkage: Structural Significance in Chemistry, Biochemistry and Materials Science. Wiley-VCH; New York 2003
  • 5 Bryan, M. C., Dunn, P. J., Entwistle, D., Gallou, F., Koenig, S. G., Hayler, J. D., Hickey, M. R., Hughes, S., Kopach, M. E., Moine, G., Richardson, P., Roschangar, F., Steven, A., Weiberth, F. J.. Green Chem.. 2018; 20: 5082
  • 6 Ojeda-Porras, A., Gamba-Sánchez, D.. J. Org. Chem.. 2016; 81: 11 548
  • 8 Marcia de Figueiredo, R., Suppo, J.-S., Campagne, J.-M.. Chem. Rev.. 2016; 116: 12 029
  • 9 Kaiser, D., Maulide, N.. J. Org. Chem.. 2016; 81: 4421
  • 10 Brown, D. G., Boström, J.. J. Med. Chem.. 2016; 59: 4443
  • 11 Szostak, R., Shi, S., Meng, G., Lalancette, R., Szostak, M.. J. Org. Chem.. 2016; 81: 8091
  • 13 Meng, G., Shi, S., Lalancette, R., Szostak, R., Szostak, M.. J. Am. Chem. Soc.. 2018; 140: 727
  • 14 Li, G., Shi, S., Lei, P., Szostak, M.. Adv. Synth. Catal.. 2018; 360: 1538
  • 15 Li, G., Lei, P., Szostak, M., Casals-Cruañas, E., Poater, A., Cavallo, L., Nolan, S. P.. ChemCatChem. 2018; 10: 3096
  • 17 Liu, Y., Meng, G., Liu, R., Szostak, M.. Chem. Commun. (Cambridge). 2016; 52: 6841
  • 18 Liu, C., Achtenhagen, M., Szostak, M.. Org. Lett.. 2016; 18: 2375
  • 19 Chaudhari, M. B., Gnanaprakasam, B.. Chem.–Asian J.. 2019; 14: 76
  • 20 Wang, Q., Su, Y., Li, L., Huang, H.. Chem. Soc. Rev.. 2016; 45: 1257
  • 21 Shi, S., Nolan, S. P., Szostak, M.. Acc. Chem. Res.. 2018; 51: 2589
  • 22 Baker, E. L., Yamano, M. M., Zhou, Y., Anthony, S. M., Garg, N. K.. Nat. Commun.. 2016; 7: 11 554
  • 23 Dander, J. E., Baker, E. L., Garg, N. K.. Chem. Sci.. 2017; 8: 6433
  • 24 Meng, G., Lei, P., Szostak, M.. Org. Lett.. 2017; 19: 2158
  • 25 Li, G., Zhou, T., Poater, A., Cavallo, L., Nolan, S. P., Szostak, M.. Catal. Sci. Technol.. 2020; 10
  • 26 Shi, S., Szostak, M.. Chem. Commun. (Cambridge). 2017; 53: 10 584
  • 27 Zhou, T., Li, G., Nolan, S. P., Szostak, M.. Org. Lett.. 2019; 21: 3304
  • 28 Liu, Y., Shi, S., Achtenhagen, M., Liu, R., Szostak, M.. Org. Lett.. 2017; 19: 1614
  • 29 Rahman, M. M., Li, G., Szostak, M.. J. Org. Chem.. 2019; 84: 12 091
  • 31 Li, G., Ji, C.-L., Hong, X., Szostak, M.. J. Am. Chem. Soc.. 2019; 141: 11 161
  • 32 Liu, Y., Achtenhagen, M., Liu, R., Szostak, M.. Org. Biomol. Chem.. 2018; 16: 1322
  • 33 Gui, J., Pan, C.-M., Jin, Y., Qin, T., Lo, J. C., Lee, B. J., Spergel, S. H., Mertzman, M. E., Pitts, W. J., La Cruz, T. E., Schmidt, M. A., Darvatkar, N., Natarajan, S. R., Baran, P. S.. Science (Washington, D. C.). 2015; 348: 886
  • 34 Cheung, C. W., Ploeger, M. L., Hu, X.. ACS Catal.. 2017; 7: 7092
  • 35 Cheung, C. W., Ma, J.-A., Hu, X.. J. Am. Chem. Soc.. 2018; 140: 6789
  • 36 Hie, L., Nathel, N. F. F., Hong, X., Yang, Y.-F., Houk, K. N., Garg, N. K.. Angew. Chem. Int. Ed.. 2016; 55: 2810
  • 37 Halima, T. B., Masson-Makdissi, J., Newman, S. G.. Angew. Chem. Int. Ed.. 2018; 57: 12 925
  • 38 Zheng, Y.-L., Newman, S. G.. ACS Catal.. 2019; 9: 4426
  • 39 Halima, T. B., Vandavasi, J. K., Shkoor, M., Newman, S. G.. ACS Catal.. 2017; 7: 2176
  • 40 Dardir, A. H., Melvin, P. R., Davis, R. M., Hazari, N., Beromi, M. M.. J. Org. Chem.. 2018; 83: 469
  • 41 Derosa, T. F., Jennejahn, R.. J. Polym. Sci., Part A: Polym. Chem.. 1990; 28: 2445
  • 42 Martin, S. F., Dwyer, M. P., Lynch, C. L.. Tetrahedron Lett.. 1998; 39: 1517
  • 43 Henderson, Jr. W. A., Schultz, C. J.. J. Org. Chem.. 1962; 27: 4643
  • 44 Chakraborti, A. K., Basak, A., Grover, V.. J. Org. Chem.. 1999; 64: 8014
  • 45 Cheung, C. W., Ploeger, M. L., Hu, X.. Nat. Commun.. 2017; 8: 14 878
  • 46 Cheung, C. W., Shen, N., Wang, S.-P., Ullah, A., Hu, X., Ma, J.-A.. Org. Chem. Front.. 2019; 6: 756
  • 47 Ling, L., Chen, C., Luo, M., Zeng, X.. Org. Lett.. 2019; 21: 1912