Campagne, J.-M.  et al.: 2024 Science of Synthesis, 2024/1: Knowledge Updates 2024/1 DOI: 10.1055/sos-SD-122-00021
Knowledge Updates 2024/1

22.1.7.2 Thioamides (Update 2024)

More Information

Book

Editors: Campagne, J.-M. ; Donohoe, T. J.; Fürstner, A. ; Jiang, X. ; Wang, M.

Authors: Cheng, J. ; Chowdhury, S. ; Harris, P. A. ; Li, X. ; Liu, M. ; Liao, L.; Song, Q. ; Tang, R.-Y. ; Tobrman, T. ; Wang, L.; Wu, X.-F. ; Ying, J. ; Yu, J.-S. ; Zhang, Y.

Title: Knowledge Updates 2024/1

Online ISBN: 9783132457058; Book DOI: 10.1055/b000000967

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Laboratory Techniques, Stoichiometry;Organometallic Chemistry

Science of Synthesis Knowledge Updates



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

This is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of thioamides, with a focus on the literature published in the period 2005–2022. In this time, a number of new synthetic methods for the preparation of thioamides have been developed. A variety of substrates, including amides, aldehydes, ketones, nitriles, carboxylic acids, thiocarboxylic acids, β-oxo carboxylic acids, alkynes, alkenes, oximes, benzylamines, benzylic alcohols, benzylic thiols, benzyl disulfides, active methylene compounds, and isothiocyanates, have been applied in these transformations. The sulfur agents used include Lawesson’s reagent, elemental sulfur, sulfide salts, phosphorus pentasulfide, thiourea, dithiophosphate, carbon disulfide, and thiophosphoryl chloride.

 
  • 1 Jagodziński TS. Chem. Rev. 2003; 103: 197
  • 2 Mahanta N, Szantai-Kis DM, Petersson EJ, Mitchell DA. ACS Chem. Biol. 2019; 14: 142
  • 3 Wang YJ, Szantai-Kis DM, Petersson EJ. Org. Biomol. Chem. 2015; 13: 5074
  • 4 Schaumann E, In: Comprehensive Organic Synthesis Molander GA, Knochel P. Elsevier Oxford 2014; 6. 411
  • 5 Yang C.-H, Li G.-J, Gong C.-J, Li Y.-M. Tetrahedron 2015; 71: 637
  • 6 Poupaert JH, Carato P, McCurdy CR. Lett. Org. Chem. 2005; 2: 330
  • 7 Polshettiwar V, Kaushik MP. Tetrahedron Lett. 2006; 47: 2315
  • 8 Cho D, Ahn J, De Castro KA, Ahn H, Rhee H. Tetrahedron 2010; 66: 5583
  • 9 Kim M, Fintan K. Tetrahedron Lett. 2016; 57: 5237
  • 10 Klingsberg E, Papa D. J. Am. Chem. Soc. 1951; 73: 4988
  • 11 Bergman J, Pettersson B, Hasimbegovic V, Svensson PH. J. Org. Chem. 2011; 76: 1546
  • 12 Lagiakos HR, Walker A, Aguilar MI, Perlmutter P. Tetrahedron Lett. 2011; 52: 5131
  • 13 Kaleta Z, Tárkányi G, Gömöry A, Kálmán F, Nagy T, Soós T. Org. Lett. 2006; 8: 1093
  • 14 Fathalla W, Ali IAI, Pazdera P. Beilstein J. Org. Chem. 2017; 13: 174
  • 15 Gomaa MS, El Enany G, Fathalla W, Ali IAI, El Rayes SM. Molecules 2022; 27: 8275
  • 16 Arias-Ugarte RN, Sharma HK, Pannell KH. Appl. Organomet. Chem. 2016; 30: 510
  • 17 Ray S, Bhaumik A, Dutta A, Butcher RJ, Mukhopadhyay C. Tetrahedron Lett. 2013; 54: 2164
  • 18 Kaboudin B, Malekzadeh L. Synlett 2011; 2807
  • 19 Bezgubenko LV, Pipko SE, Sinitsa AD. Russ. J. Gen. Chem. (Engl. Transl.) 2008; 78: 1341
  • 20 Panduranga V, Prabhu G, Kumar LR, Krishnamurthy M, Sureshbabu VV. RSC Adv. 2016; 6: 98 141
  • 21 Shibahara F, Sugiura R, Murai T. Org. Lett. 2009; 11: 3064
  • 22 Huang Z.-B, Guo X.-Y, Huang Z.-H, Li M.-H, Dong S.-C, Tang R.-Y. Asian J. Org. Chem. 2020; 9: 1243
  • 23 Kaboudin B, Elhamifar D, Farjadian F. Org. Prep. Proced. Int. 2006; 38: 412
  • 24 Ami SG, Maity AC, Das NK. J. Sulfur Chem. 2007; 28: 233
  • 25 Khromova NY, Malekin SI, Kutkin AV, Kondrat’ev VB. Russ. J. Gen. Chem. (Engl. Transl.) 2015; 85: 2295
  • 26 Kaboudin B, Elhamifar D. Synthesis 2006; 224
  • 27 Khosropour AR, Noei J, Mirjafari A. J. Iran. Chem. Soc. 2010; 7: 752
  • 28 Cao XT, Qiao L, Zheng H, Yang H.-Y, Zhang P.-F. RSC Adv. 2018; 8: 170
  • 29 Ghosh T, Si A, Misra AK. ChemistrySelect 2017; 2: 1366
  • 30 Manaka A, Sato M. Synth. Commun. 2005; 35: 761
  • 31 Boys ML, Downs VL. Synth. Commun. 2006; 36: 295
  • 32 Ritson DJ, Xu J, Sutherland JD. Synlett 2017; 28: 64
  • 33 Nagl M, Panuschka C, Barta A, Schmid W. Synthesis 2008; 4012
  • 34 Mahammed KA, Jayashankara VP, Rai NP, Raju KM, Arunachalam PN. Synlett 2009; 2338
  • 35 Tang S.-Z, Xiang K, Ye R, Chen M.-E, Yu J.-C, He Z.-J, Zhang F.-M. Chem. Commun. (Cambridge) 2022; 58: 11 430
  • 36 Liao Y, Jiang X. Org. Lett. 2021; 23: 8862
  • 37 Xu H, Deng H, Li Z, Xiang H, Zhou X. Eur. J. Org. Chem. 2013; 7054
  • 38 Okamoto K, Yamamoto T, Kanbara T. Synlett 2007; 2687
  • 39 Khatri CK, Mali AS, Chaturbhuj GU. Monatsh. Chem. 2017; 148: 1463
  • 40 Pathare SP, Chaudhari PS, Akamanchi KG. Appl. Catal., A. 2012; 425–426: 125
  • 41 Yin Z, Zheng B, Ai F. Phosphorus, Sulfur Silicon Relat. Elem. 2013; 188: 1412
  • 42 Tayade YA, Jangale AD, Dalal DS. ChemistrySelect 2018; 3: 8895
  • 43 Agnimonhan HF, Ahoussi LA, Glinma B, Kohoudé JM, Gbaguidi FA, Kpoviessi SDS, Poupaert J, Accrombessi GC. Org. Chem.: Curr. Res. 2017; 6: 1 000 180
  • 44 Singh A, Saini S, Singh N, Kaur N, Jang DO. RSC Adv. 2022; 12: 6659
  • 45 Fazylov SD, Nurkenov OA, Akhmetkarimova ZS, Zhienbaeva DR. Russ. J. Gen. Chem. (Engl. Transl.) 2012; 82: 781
  • 46 Kale AD, Tayade YA, Mahale SD, Patil RD, Dalal DS. Tetrahedron 2019; 75: 130 575
  • 47 Fedorovich IS, Ganushchak NI, Karpyak VV, Obushchak ND, Lesyuk AI. Russ. J. Org. Chem. (Engl. Transl.) 2007; 43: 1190
  • 48 Mitra B, Pariyar GC, Ghosh P. ChemistrySelect 2019; 4: 5476
  • 49 Yadav AK, Srivastava VP, Yadav LDS. Synth. Commun. 2014; 44: 408
  • 50 Li J, Ren X, Li G, Liang H, Zhao Y, Wang Z, Li H, Yuan B. J. Sulfur Chem. 2020; 41: 229
  • 51 Liu W, Chen C, Liu H. Beilstein J. Org. Chem. 2015; 11: 1721
  • 52 Wei J, Li Y, Jiang X. Org. Lett. 2016; 18: 340
  • 53 Bian Y, Qu X, Chen Y, Li J, Liu L. Molecules 2018; 23: 2225
  • 54 Zeng M.-T, Wang M, Peng H.-Y, Cheng Y, Dong Z.-B. Synthesis 2018; 50: 644
  • 55 Eftekhari-Sis B, Vahdati-Khajeh S, Amini SM, Zirak M, Saraei M. J. Sulfur Chem. 2013; 34: 464
  • 56 Valdez-Rojas JE, Ríos-Guerra H, Ramírez-Sánchez AL. Can. J. Chem. 2012; 90: 567
  • 57 Guntreddi T, Vanjari R, Singh KN. Org. Lett. 2014; 16: 3624
  • 58 Kumar S, Vanjari R, Guntreddi T. Tetrahedron 2016; 72: 2012
  • 59 Do NT, Tran KM, Phan HT, To TA, Nguyen TT, Phan NTS. Org. Biomol. Chem. 2019; 17: 8987
  • 60 Noor A, Li J, Khairallah GN, Li Z, Ghari H, Canty AJ, Ariafard A, Donnelly PS, O’Hair RAJ. Chem. Commun. (Cambridge) 2017; 53: 3854
  • 61 Saito M, Murakami S, Nanjo T, Kobayashi Y, Takemoto Y. J. Am. Chem. Soc. 2020; 142: 8130
  • 62 Lai M, Wu Z, Wang Y, Zheng Y, Zhao M. Org. Chem. Front. 2019; 6: 506
  • 63 Wang C, Han C, Yang J, Zhang Z, Zhao Y, Zhao J. J. Org. Chem. 2022; 87: 5617
  • 64 Kaboudin B, Yarahmadi V, Kato J. RSC Adv. 2013; 3: 6435
  • 65 Yielzoleh FM, Nikoofar K. J. Mol. Struct. 2022; 1260: 132 836
  • 66 Xu K, Li Z, Cheng F, Zuo Z, Wang T, Wang M, Liu L. Org. Lett. 2018; 20: 2228
  • 67 Ibragimov AG, Makhmudiyarov GA, Shaibakova MG, Khalilov LM, Dzhemilev UM. Russ. J. Org. Chem. (Engl. Transl.) 2019; 55: 1980
  • 68 Sun Y, Jiang H, Wu W, Zeng W, Li J. Org. Biomol. Chem. 2014; 12: 700
  • 69 Khalaj M. Monatsh. Chem. 2020; 151: 79
  • 70 Nguyen TB, Tran MQ, Ermolenko L, Al-Mourabit A. Org. Lett. 2014; 16: 310
  • 71 Peng L, Ma L, Ran Y, Chen Y, Zeng Z. Tetrahedron Lett. 2021; 74: 153 092
  • 72 Zhang P, Chen W, Liu M, Wu H. J. Org. Chem. 2018; 83: 14 269
  • 73 Liu L, Guo Z, Xu K, Hui S, Zhao X, Wu Y. Org. Chem. Front. 2018; 5: 3315
  • 74 Gan L, Gao Y, Wei L, Wan J.-P. J. Org. Chem. 2019; 84: 1064
  • 75 Morri AK, Thummala Y, Adepu R, Sharma GVM, Ghosh S, Doddi VR. Eur. J. Org. Chem. 2019; 7159
  • 76 Vankar JK, Gupta A, Jadav JP, Nanjegowda SH, Gururaja GN. Org. Biomol. Chem. 2021; 19: 2473
  • 77 Wei Y, Liu Y, Xie L.-G. Chin. Chem. Lett. 2022; 33: 2407
  • 78 Pathak U, Pandey LK, Mathur S, Suryanarayana MVS. Chem. Commun. (Cambridge) 2009; 5409
  • 79 Li J, Cheng C, Zhang X, Li Z, Cai F, Xue Y, Liu W. Chin. J. Chem. 2012; 30: 1687
  • 80 Noei J, Khosropour AR. Tetrahedron Lett. 2008; 49: 6969
  • 81 Liu L.-F, An N, Pi H.-J, Ying J, Du W, Deng W.-P. Synlett 2011; 979
  • 82 Yadav AK, Srivastava VP, Yadav LDS. Tetrahedron Lett. 2012; 53: 7113
  • 83 Milen M, Ábrányi-Balogh P, Dancsó A, Keglevich G. J. Sulfur Chem. 2012; 33: 33
  • 84 Kurpil B, Kumru B, Heil T, Antonietti M, Savateev A. Green Chem. 2018; 20: 838
  • 85 Zhan Z, Luo N, Ma H, He J, Lu G, Cui X, Huang G. ChemistrySelect 2019; 4: 13 388
  • 86 Nguyen TB, Ermolenko L, Al-Mourabit A. Org. Lett. 2012; 14: 4274
  • 87 Gisbert P, Pastor IM. Synthesis 2018; 50: 3031
  • 88 Li X, Pan Q, Hu R, Wang X, Yang Z, Han S. Asian J. Org. Chem. 2016; 5: 1353
  • 89 Nguyen TB, Nguyen LPA, Nguyen TTT. Adv. Synth. Catal. 2019; 361: 1787
  • 90 Chen J, Mei L, Liu J, Zhong C, Yuan B, Li Q. RSC Adv. 2019; 9: 28 576
  • 91 Qiao M, Zhang J, Chen L, Zhou F, Zhang Y, Zhou L, Wu Y. Org. Biomol. Chem. 2019; 17: 3790
  • 92 Wang X, Ji M, Lim S, Jang H.-Y. J. Org. Chem. 2014; 79: 7256
  • 93 Zarinderakht N, Abbasi M, Nowrouz N. Appl. Organomet. Chem. 2022; 36: e6709
  • 94 Jin H, Ge X, Zhou S. Eur. J. Org. Chem. 2021; 6015
  • 95 Kapil K, Konar D, Goyal S, Gangar M, Chouhan M, Rawal RK, Nair VA. ChemistrySelect 2016; 1: 3228
  • 96 Zhou A, Gao L, Li H, Liu Z, Pittman Jr CU. Synlett 2006; 201
  • 97 Miele M, D’Orsi R, Sridharan V, Holzer W, Pace V. Chem. Commun. (Cambridge) 2019; 55: 12 960
  • 98 Pace V, Castoldi L, Monticelli S, Safranek S, Roller A, Langer T, Holzer W. Chem.–Eur. J. 2015; 21: 18 966
  • 99 Jagodziński TS, Sośnicki JG, Struk Ł. ARKIVOC 2017; 43
  • 100 Jagodziński TS, Sośnicki JG, Struk Ł. Phosphorus, Sulfur Silicon Relat. Elem. 2016; 191: 290
  • 101 Zhou H, Lu P, Gu X, Li P. Org. Lett. 2013; 15: 5646
  • 102 Zhou Z, Yu J.-T, Zhou Y, Jiang Y, Cheng J. Org. Chem. Front. 2017; 4: 413
  • 103 Jin H, Chen X, Qian C, Ge X, Zhou S. Eur. J. Org. Chem. 2021; 3403
  • 104 Tian H, Guo F, Chen X. Russ. J. Org. Chem. (Engl. Transl.) 2022; 58: 1260
  • 105 Tirumaleswararao G, Rajeshwer V, Krishna NS. Tetrahedron 2014; 70: 3887
  • 106 Ho TH, Le HHK, To TA, Nguyen TT, Phan NTS. Bull. Chem. Soc. Jpn. 2020; 93: 783
  • 107 Liu J, Zhao S, Yan X, Zhang Y, Zhao S, Zhuo K, Yue Y. Asian J. Org. Chem. 2017; 6: 1764
  • 108 Nguyen TTT, Nguyen LA, Ngo QA, Koleski M, Nguyen TB. Org. Chem. Front. 2021; 8: 1593
  • 109 Kolakowski RV, Shangguan N, Williams LJ. Tetrahedron Lett. 2006; 47: 1163
  • 110 Suzuki A, Takagi K, Sato K, Wada T. Tetrahedron Lett. 2021; 75: 153 179
  • 111 Worth AC, Needham CE, Franklin DB, Lampkins A. Synth. Commun. 2012; 42: 2694
  • 112 Katritzky AR, Witek RM, Rodriguez-Garcia V, Mohapatra PP, Rogers JW, Cusido J, Abdel-Fattah AAA, Steel PJ. J. Org. Chem. 2005; 70: 7866
  • 113 Monteith JJ, Scotchburn K, Mills LR, Rousseaux SAL. Org. Lett. 2022; 24: 619
  • 114 Ojeda-Porras A, Gamba-Sánchez D. Tetrahedron Lett. 2015; 56: 4308
  • 115 Wu J.-W, Wu Y.-D, Dai J.-J, Xu H.-J. Adv. Synth. Catal. 2014; 356: 2429
  • 116 Mukherjee S, Verma H, Chatterjee J. Org. Lett. 2015; 17: 3150
  • 117 Li G, Xing Y, Zhao H, Zhang J, Hong X, Szostak M. Angew. Chem. Int. Ed. 2022; 61: e202 200 144
  • 118 Lu C, Li X, Chang S, Zhang Y, Xing D, Wang S, Lin Y, Jiang H, Huang L. Org. Chem. Front. 2022; 9: 2382