Campagne, J.-M.  et al.: 2024 Science of Synthesis, 2024/2: Knowledge Updates 2024/2 DOI: 10.1055/sos-SD-122-00194
Knowledge Updates 2024/2

22.2.5 Selenocarboxylic Acids and Derivatives (Update 2024)

More Information

Book

Editors: Campagne, J.-M. ; Donohoe, T. J.; Jiang, X. ; Wang, M.

Authors: Cellnik, T. ; de Figueiredo, R. M. ; Deng, G.-J. ; Dong, K. ; Healy, A. ; Huang, H. ; Ji, X. ; Jo, W. ; Manisha ; Murai, T. ; Parmar, D. ; Sawamura, M. ; Sharma, U. ; Shimizu, Y. ; Sumit ; Yang, Z.

Title: Knowledge Updates 2024/2

Online ISBN: 9783132457065; Book DOI: 10.1055/b000000968

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Knowledge Updates



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

Selenocarboxylic acids and their derivatives are the selenium isologues of carboxylic, thioic, carbamic, and carbonic acids, and the corresponding esters, amides, and ureas, and are distinguished by the presence of a C=Se bond. The synthesis of these selenium analogues primarily involves incorporating selenium atoms into precursor molecules. This can be achieved by reducing elemental selenium to produce Se2– species, which are then introduced into electrophilic species. Alternatively, carbon nucleophiles can directly bond with elemental selenium, forming carbon–selenium bonds. Compounds containing a P=Se bond, such as Woollins’ reagent, are used to substitute the oxygen in a C=O bond with selenium, creating a C=Se bond. Carbon diselenide (CSe2) is another agent used in synthesizing these derivatives. However, extreme caution is required when handling CSe2 due to its potent odor and toxicity.

 
  • 1 Wirth T. Science of Synthesis 2005; 22: 181
  • 2 Hua G, Woollins JD. ACS Omega 2021; 6: 31 226
  • 3 Gómez Castaño JA, Romano RM, Beckers H, Willner H, Boese R, Della Védova CO. Angew. Chem. Int. Ed. 2008; 47: 10 114
  • 4 Abdo M, Knapp S. J. Am. Chem. Soc. 2008; 130: 9234
  • 5 Gómez Castaño JA, Romano RM, Beckers H, Willner H, Della Védova CO. Inorg. Chem. 2012; 51: 2608
  • 6 Gómez Castaño JA, Romano RM, Beckers H, Willner H, Della Védova CO. Eur. J. Inorg. Chem. 2013; 4585
  • 7 Abdo M, Sun Z, Knapp S. Molecules 2013; 18: 1963
  • 8 Itoh T, Yoshimoto N, Hirano Y, Yamamoto K. Bioorg. Med. Chem. Lett. 2018; 28: 2256
  • 9 Takahashi T, Niyomura O, Kato S, Ebihara M. Z. Anorg. Allg. Chem. 2013; 639: 108
  • 10 Nakata N, Kato S, Niyomura O, Ebihara M. Heteroat. Chem. 2018; 29: e21445
  • 11 Ramos-Inza S, Encío I, Raza A, Sharma AK, Sanmartín C, Plano D. Eur. J. Med. Chem. 2022; 244: 114 839
  • 12 Wu X, Chen Y, Hu L. Tetrahedron Lett. 2009; 50: 5585
  • 13 Murai T, Nishi D, Hayashi S, Nakanishi W. Bull. Chem. Soc. Jpn. 2014; 87: 677
  • 14 Zheng , Chen J, Luo N, Yu , Han X. Organometallics 2006; 25: 5301
  • 15 Murai T, Yoshida A, Mizutani T, Kubuki H, Yamaguchi K, Maruyama T, Shibahara F. Chem. Lett. 2017; 46: 1017
  • 16 Hua G, Woollins JD. Angew. Chem. Int. Ed. 2009; 48: 1368
  • 17 Huhtiniemi T, Suuronen T, Lahtela-Kakkonen M, Bruijn T, Jääskeläinen S, Poso A, Salminen A, Leppänen J, Jarho E. Bioorg. Med. Chem. 2010; 18: 5616
  • 18 Huang Y, Jahreis G, Lücke C, Wildemann D, Fischer G. J. Am. Chem. Soc. 2010; 132: 7578
  • 19 Martins IL, Miranda JP, Oliveira NG, Fernandes AS, Gonçalves S, Antunes AMM. Molecules 2013; 18: 5251
  • 20 Hua G, Du J, Fuller AL, Arachchige KSA, Cordes DB, Slawin AMZ, Woollins JD. Synlett 2015; 26: 839
  • 21 Hua G, Carpenter-Warren CL, Cordes DB, Slawin AMZ, Woollins JD. Molecules 2021; 26: 2367
  • 22 Holler S, Tüchler M, Roschger MC, Belaj F, Veiros LF, Kirchner K, Mösch-Zanetti NC. Inorg. Chem. 2017; 56: 12 670
  • 23 Zhao Q, Li G, Nareddy P, Jordan F, Lalancette R, Szostak R, Szostak M. Angew. Chem. Int. Ed. 2022; 61: e202207346
  • 24 Vishwanatha TM, Narendra N, Chattopadhyay B, Mukherjee M, Sureshbabu VV. J. Org. Chem. 2012; 77: 2689
  • 25 Shibahara F, Sugiura R, Murai T. Org. Lett. 2009; 11: 3064
  • 26 Shibahara F, Suzuki M, Kubota S, Fukunaga T, Udagawa T, Murai T. J. Org. Chem. 2018; 83: 3078
  • 27 Hua G, Li Y, Slawin AMZ, Woollins JD. Org. Lett. 2006; 8: 5251
  • 28 Hua G, Du J, Slawin AMZ, Woollins JD. Synlett 2014; 25: 2189
  • 29 Chen Y, Tian F, Song M, Lu S. Heteroat. Chem. 2008; 19: 211
  • 30 Madhu C, Panguluri NR, Narendra N, Panduranga V, Sureshbabu VV. Tetrahedron Lett. 2014; 55: 6831
  • 31 Dyachenko IV, Dyachenko VD. Russ. J. Gen. Chem. (Engl. Transl.) 2015; 85: 1673
  • 32 Dyachenko IV, Dyachenko VD, Abakarov GM, Nenajdenko VG. Russ. J. Org. Chem. (Engl. Transl.) 2021; 57: 1188
  • 33 Dotsenko VV, Frolov KA, Krivokolysko SG. Chem. Heterocycl. Compd. (Engl. Transl.) 2013; 49: 657
  • 34 Shimada K, Izumi H, Otashiro K, Noro K, Aoyagi S, Takikawa Y, Korenaga T. Nat. Prod. Commun. 2015; 10: 903
  • 35 Wang D.-L, Jiang N.-Q, Cai Z.-J, Ji S.-J. J. Org. Chem. 2021; 86: 9898
  • 36 Petrov ML, Lyapunova AG, Androsov DA. Russ. J. Org. Chem. (Engl. Transl.) 2012; 48: 147
  • 37 Shangpliang OR, Kshiar B, Wanniang K, Marpna ID, Lipon TM, Laloo BM, Myrboh B. J. Org. Chem. 2018; 83: 5829
  • 38 Gutiérrez-Hernández AI, López-Cortés JG, Ortega-Alfaro MC, Ramírez-Apan MT, de Jesús Cázares-Marinero J, Toscano RA. J. Med. Chem. 2012; 55: 4652
  • 39 Garcia-López JG, Gutiérrez-Hernández AI, Toscano RA, Ramírez-Apan MT, Terrón JA, Ortega-Alfaro MC, López-Cortés JG. ARKIVOC 2021; iii, 13 available online at www.arkat-usa.org
  • 40 Rao B, Tang H, Zeng X, Liu LL, Melaimi M, Bertrand G. Angew. Chem. Int. Ed. 2015; 54: 14 915
  • 41 Weinstein CM, Junor GP, Tolentino DR, Jazzar R, Melaimi M, Bertrand G. J. Am. Chem. Soc. 2018; 140: 9255
  • 42 Batsyts S, Vedmid R, Namyslo JC, Nieger M, Schmidt A. Eur. J. Org. Chem. 2019; 1301
  • 43 Merschel A, Glodde T, Neumann B, Stammler H.-G, Ghadwal RS. Angew. Chem. Int. Ed. 2021; 60: 2969
  • 44 Kim H, Kim M, Song H, Lee E. Chem.–Eur. J. 2021; 27: 3849
  • 45 Kumar A, Kisan HK, Huynh HV. Organometallics 2021; 40: 1699
  • 46 Salon J, Sheng J, Jiang J, Chen G, Caton-Williams J, Huang Z. J. Am. Chem. Soc. 2007; 129: 4862
  • 47 Caton-Williams J, Huang Z. Angew. Chem. Int. Ed. 2008; 47: 1723
  • 48 Murai T, Nogawa S, Mutoh Y. Bull. Chem. Soc. Jpn. 2007; 80: 2220
  • 49 Mitamura T, Ogawa A. Org. Lett. 2009; 11: 2045
  • 50 Mitamura T, Nomoto A, Sonoda M, Ogawa A. Tetrahedron 2008; 64: 9983
  • 51 Murai T, Ezaka T, Kato S. Synthesis 2012; 44: 3197
  • 52 Murai T, Mizutani T, Ebihara M, Maruyama T. J. Org. Chem. 2015; 80: 6903
  • 53 Murai T, Yamaguchi K, Hori F, Maruyama T. J. Org. Chem. 2014; 79: 4930
  • 54 Murai T, Nonoyama T. Tetrahedron 2012; 68: 10 489
  • 55 Gallenkamp D, Tiekink ERT, Mohr F. Phosphorus, Sulfur Silicon Relat. Elem. 2008; 183: 1050
  • 56 Merino-Montiel P, Maza S, Martos S, López Ó, Maya I, Fernández-Bolaños JG. Eur. J. Pharm. Sci. 2013; 48: 582
  • 57 Zakrzewski J, Huras B, Kiełczewska A, Krawczyk M, Hupko J, Jaszczuk K. Molecules 2019; 24: 2457
  • 58 Garud DR, Makimura M, Ando H, Ishihara H, Koketsu M. Tetrahedron Lett. 2007; 48: 7764
  • 59 Koketsu M, Yamamura Y, Aoki H, Ishihara H. Phosphorus, Sulfur Silicon Relat. Elem. 2006; 181: 2699
  • 60 Maeda H, Takashima M, Sakata K, Watanabe T, Honda M, Segi M. Tetrahedron Lett. 2011; 52: 415
  • 61 Eriksen K, Ulfkjær U, Sølling TI, Pittelkow M. J. Org. Chem. 2018; 83: 10 786
  • 62 Sørensen A, Rasmussen B, Agarwal S, Schau-Magnussen M, Sølling TI, Pittelkow M. Angew. Chem. Int. Ed. 2013; 52: 12 346
  • 63 López Ó, Maza S, Ulgar V, Maya I, Fernández-Bolaños JG. Tetrahedron 2009; 65: 2556
  • 64 Casula A, Begines P, Bettoschi A, Fernandez-Bolaños JG, Isaia F, Lippolis V, López Ó, Picci G, Scorciapino MA, Caltagirone C. Chem. Commun. (Cambridge) 2017; 53: 11 869
  • 65 Campos MP, Hendricks MP, Beecher AN, Walravens W, Swain RA, Cleveland GT, Hens Z, Sfeir MY, Owen JS. J. Am. Chem. Soc. 2017; 139: 2296
  • 66 Picci G, Mocci R, Ciancaleoni G, Lippolis V, Zielińska-Błajet M, Caltagirone C. ChemPlusChem 2020; 85: 1389
  • 67 Lin Y, Hirschi WJ, Kunadia A, Paul A, Ghiviriga I, Abboud KA, Karugu RW, Vetticatt MJ, Hirschi JS, Seidel D. J. Am. Chem. Soc. 2020; 142: 5627
  • 68 Calvo-Martín G, Plano D, Encío I, Sanmartín C. Antioxidants 2021; 10: 777
  • 69 Molter A, Rust J, Lehmann CW, Mohr F. ARKIVOC 2011; vi, 10 available online at www.arkat-usa.org
  • 70 Hussain RA, Badshah A, Tahir MN, Tamoor-ul-Hassan , Bano A. J. Biochem. Mol. Toxicol. 2014; 28: 60
  • 71 Musthafa M, Aneesrahman KN, Perumalsamy B, Ramasamy T, Ganguly R, Sreekanth A. J. Mol. Struct. 2019; 1180: 585
  • 72 Hussain RA, Badshah A, Ahmed N, Pezzuto JM, Kondratyuk TP, Park E.-J, Hussain I. Polyhedron 2019; 170: 12
  • 73 Li L, Wu J, Wei L, Lu J, Jiang X. J. Org. Chem. 2021; 86: 446
  • 74 Yiğit M, Celepci DB, Taslimi P, Yiğit B, Çetinkaya E, Özdemir I, Aygün M, Gülçin I. Bioorg. Chem. 2022; 120: 105 566
  • 75 Ma F, Zhu J, Zhang Z, Pan X, Zhou N, Zhu X. J. Polym. Sci., Part A: Polym. Chem. 2013; 51: 3159
  • 76 Zeng J, Zhu J, Pan X, Zhang Z, Zhou N, Cheng Z, Zhang W, Zhu X. Polym. Chem. 2013; 4: 3453
  • 77 Gao F, Pan X, Zhu J, Zhang Z, Zhang W, Zhu X. Polym. Chem. 2015; 6: 1367
  • 78 Cai Z, Lu W, Gao F, Pan X, Zhu J, Zhang Z, Zhu X. Macromol. Rapid Commun. 2016; 37: 865
  • 79 Lu W, An X, Gao F, Zhu J, Zhou N, Zhang Z, Pan X, Zhu X. Macromol. Chem. Phys. 2017; 218: 1 600 485
  • 80 Lu W, An X, Zhu J, Zhou N, Zhang Z, Pan X, Zhu X. RSC Adv. 2017; 7: 9773
  • 81 An X, Lu W, Zhu J, Pan X, Zhu X. Polymers 2019; 11: 827
  • 82 Pan X, Zhu J, Zou J, Zhang Z, Cheng Z, Zhou N, Zhang W, Zhu X. Org. Lett. 2012; 14: 6170
  • 83 Gao F, Pan X, Zhu J, Zhang Z, Zhang W, Zhu X. J. Polym., Sci. Part A: Polym. Chem. 2015; 53: 1927
  • 84 Matioszek D, Brusylovets O, Wilson DJ, Mazières S, Destarac M. J. Polym., Sci. Part A: Polym. Chem. 2013; 51: 4361
  • 85 Matioszek D, Mazières S, Brusylovets O, Lin CY, Coote ML, Destarac M, Harrisson S. Macromolecules 2019; 52: 3376
  • 86 Li L, Peng X, Lu J, Jiang X. Org. Chem. Front. 2021; 8: 6642
  • 87 Zeng J, Zhang Z, Zhu J, Zhou N, Cheng Z, Zhu X. J. Polym., Sci. Part A: Polym. Chem. 2013; 51: 2606