Brøndsted Nielsen, M. et al.: 2014 Science of Synthesis, 2014/2: Knowledge Updates 2014/2 DOI: 10.1055/sos-SD-127-00361
Knowledge Updates 2014/2

27.4.3 Thioaldehyde and Thioketone S-Oxides and S-Imides (Sulfines and Derivatives) (Update 2014)

More Information

Book

Editors: Brøndsted Nielsen, M.; Krause, N.; Marek, I.; Schaumann, E.; Wirth, T.

Authors: Aguilar, E.; Beier, P.; Fuchibe, K.; Ghorai, S.; Heimgartner, H.; Ibis, C.; Ichikawa, J.; Lipshutz, B. H.; Liu, Q.; López, L. A.; Margaretha, P.; Mlostoń, G.; Shneider, O. S.; Szpilman, A. M.; Vilhelmsen, M. H.; Yin, Q.; You, S.-L.

Title: Knowledge Updates 2014/2

Print ISBN: 9783131762412; Online ISBN: 9783131975010; Book DOI: 10.1055/b-003-125812

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Knowledge Updates



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Carreira, E. M.; Decicco, C. P.; Fürstner, A.; Molander, G. A.; Schaumann, E.; Shibasaki, M.; Thomas, E. J.; Trost, B. M.

Type: Multivolume Edition

 


G. Mlostoń; H. Heimgartner

Abstract

Zoom

This chapter is an update to the earlier Science of Synthesis contribution describing methods of synthesis and new applications for thiocarbonyl S-oxides (sulfines) and thiocarbonyl S-imides. In general, thiocarbonyl S-oxides are more stable and in many instances can be isolated. The in situ generated thiocarbonyl S-imides are efficient “sulfur-transfer agents” via the isomeric thiaziridines, formed as products of electrocyclic ring closure. Stable thiocarbonyl S-imides, derived from hexafluorothioacetone, are useful 1,3-dipoles and are applied in the preparation of fluorinated five-membered heterocycles.

 
  • 2 Schreiner PR, Reisenauer HP, Romański J, Mlostoń G. Angew. Chem. Int. Ed. 2009; 48: 8133
  • 3 Ishii A, Nakabayashi M, Jin Y.-N, Nakayama J. J. Organomet. Chem. 2000; 611: 127
  • 4 Ishii A, Akazawa T, Ding M.-X, Honjo T, Nakayama J, Hoshino M. J. Am. Chem. Soc. 1993; 115: 4914
  • 5 Ishii A, Akazawa T, Ding M.-X, Honjo T, Maruta T, Nakamura S, Nagaya H, Ogura M, Teramoto K, Shiro M, Hoshino M, Nakayama J. Bull. Chem. Soc. Jpn. 1997; 70: 509
  • 7 Ishii A, Ohishi M, Nakata N. Eur. J. Inorg. Chem. 2007; 5199
  • 8 Winkelmann E, Raether W. US 4 001 415, 1977 Chem. Abstr.. 1975 82 170 930
  • 9 Huff JR, Saari WS, Baldwin JJ. US 4 506 074, 1985 Chem. Abstr.. 1985 103 6340
  • 10 Matsuo M, Ogino T, Igari N, Seno H, Shimomura K. US 5 256 675, 1993 Chem. Abstr.. 1991 115 29 311
  • 11 Sohda T, Taketomi S, Baba A. US 5 719 157, 1998 Chem. Abstr.. 1995 122 187 610
  • 12 Müller K.-H, Lehr S, Schallner O, Schwarz H.-G, Drewes MW, Dahmen P, Feucht D, Pontzen R. US 6 610 631, 2003 Chem. Abstr.. 2001 134 280 846
  • 13 Shiraishi M, Kitayoshi T, Aramaki Y, Honda S, Oda T. US 6 166 006, 2000 Chem. Abstr.. 1999 131 73 571
  • 14 Matturro MG, Reynolds RP, Kastrup RV, Pictroski CF. J. Am. Chem. Soc. 1986; 108: 2775
  • 16 Sotgiu G, Galeotti M, Samori C, Bongini A, Mazzanti A. Chem.–Eur. J. 2011; 17: 7947
  • 17 Reisenauer HP, Schreiner PR, Mlostoń G, Romański J. Eur. J. Org. Chem. 2011; 6269
  • 18 Huisgen R, Mlostoń G, Polborn K, Palacios-Gambra F. Liebigs Ann./Recl. 1997; 187
  • 19 Adam W, Bargon RM, Mlostoń G. Eur. J. Org. Chem. 2003; 4012
  • 23 Markovsky LN, Timoshenko VM, Shermolovich YuG. Zh. Org. Khim. 1995; 31: 161 Chem. Abstr. 1996; 124: 116 274a
  • 25 May A, Roesky HW, Stalke D, Pauer F, Sheldrick GM. Chem. Ber. 1990; 123: 1475
  • 27 Mlostoń G, Romański J, Linden A, Heimgartner H. Helv. Chim. Acta 1993; 76: 2147
  • 28 Mlostoń G, Romański J, Linden A, Heimgartner H. Helv. Chim. Acta 1995; 78: 1499
  • 29 Takahashi M, Okazaki R, Inamoto N, Sugawara T, Iwamura H. J. Am. Chem. Soc. 1992; 114: 1830
  • 31 Mlostoń G, Celeda M, Roesky HW, Parisini E, Ahlemann J.-T. Eur. J. Org. Chem. 1998; 459