Fernández, E. et al.: 2021 Science of Synthesis, 2021/2: Knowledge Updates 2021/2 DOI: 10.1055/sos-SD-127-00451
Knowledge Updates 2021/2

27.27 Product Class 27: 1,2-Diimines

More Information

Book

Editors: Fernández, E.; Huang, Z.; Jiang, X.; Koch, G.; Marschner, C.; Wang, M.

Authors: Chand, K. ; Davies, G. H. M.; Dorairaj, D. P.; Guo, R.; Hsu, S. C. N. ; Isovitsch, R.; Jiang, X.; Růžička, A.; Sirvinskas, M.; Takeda, N.; Trofimova, A.; Umesh; Vrána, J.; Wang, M.; Wisniewski, S. R.; Xiong, Y.; Ye, Z.-S.; Yudin, A. K.; Zhang, G. Z.

Title: Knowledge Updates 2021/2

Print ISBN: 9783132442061; Online ISBN: 9783132442085; Book DOI: 10.1055/b000000477

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Knowledge Updates



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

The utility of 1,2-diimines (α-diimines, 1,4-diazabutadienes) stems from the ease with which their steric and electronic properties can be tailored to a specific use. Current interest in this area involves using 1,2-diimines as precursors for novel bioactive compounds, as well as transition-metal ligands for the formation of novel polymerization catalysts and chemotherapeutic agents. In this review, the fundamental approaches for the synthesis of 1,2-diimines are described, as well as a current sampling of the unique ways that they are used to solve research problems. The chapter is organized based on the ways that 1,2-diimines are synthesized: condensation reactions and metal-promoted methods.

 
  • 1 Liu H, Zhao W, Hao X, Redshaw C, Huang W, Sun W.-H. Organometallics 2011; 30: 2418
  • 2 Lersch M, Krivokapic A, Tilset M. Organometallics 2007; 26: 1581
  • 3 Seo M.-S, Sun D, Kim H. J. Org. Chem. 2017; 82: 6586
  • 4 Dieck HT, Dietrich J. Chem. Ber. 1984; 117: 694
  • 5 Armesta D, Bosch P, Gallegho MG, Martin JF, Ortiz MJ, Perez-Ossorio R, Ramos A. Org. Prep. Proced. Int. 1987; 19: 181
  • 6 He J.-Y, Xin H.-X, Yan H, Song X.-Q, Zhong R.-G. Ultrason. Sonochem. 2011; 18: 466
  • 7 Jin W, Makioka Y, Kitamura T, Fujiwara Y. J. Org. Chem. 2001; 66: 514
  • 8 Han H, Zhang T, Yang S.-D, Lan Y, Xia J.-B. Org. Lett. 2019; 21: 1749
  • 9 Tran CC, Kawaguchi S.-i, Kobiki Y, Matsubara H, Tran DP, Kodama S, Nomoto A, Ogawa A. J. Org. Chem. 2019; 84: 11 741
  • 10 Johnson LK, Killian CM, Brookhart M. J. Am. Chem. Soc. 1995; 117: 6414
  • 11 Ittel SD, Johnson LK, Brookhart M. Chem. Rev. 2000; 100: 1169
  • 12 Liu W, Brookhart M. Organometallics 2004; 23: 6099
  • 13 Nakamura A, Ito S, Nozaki K. Chem. Rev. 2009; 109: 5215
  • 14 Wang F, Chen C. Polym. Chem. 2019; 10: 2354
  • 15 Schmid M, Eberhardt R, Klinga M, Leskelä M, Rieger B. Organometallics 2001; 20: 2321
  • 16 Mak CSK, Wong HL, Leung QY, Tam WY, Chan WK, Djurišić AB. J. Organomet. Chem. 2009; 694: 2770
  • 17 Wang Z, Chen N, Xu J. Tetrahedron 2011; 67: 9690
  • 18 Faust R, Göbelt B, Weber C, Krieger C, Gross M, Gisselbrecht J.-P, Boudon C. Eur. J. Org. Chem. 1999; 1999: 205
  • 20 Konkankit CC, Vaughn BA, MacMillan SN, Boros E, Wilson JJ. Inorg. Chem. 2019; 58: 3895
  • 21 Noble MEM, Endicott JA, Johnson LN. Science (Washington, D. C.) 2004; 303: 1800
  • 22 Ginzinger W, Mühlgassner G, Arion VB, Jakupec MA, Roller A, Galanski M, Reithofer M, Berger W, Keppler BK. J. Med. Chem. 2012; 55: 3398
  • 23 Klingler FD. Acc. Chem. Res. 2007; 40: 1367
  • 24 Popeney C, Guan Z. Organometallics 2005; 24: 1145
  • 25 Popeney CS, Levins CM, Guan Z. Organometallics 2011; 30: 2432
  • 26 Gong Y, Li S, Gong Q, Zhang S, Liu B, Dai S. Organometallics 2019; 38: 2919
  • 27 Falivene L, Credendino R, Poater A, Petta A, Serra L, Oliva R, Scarano V, Cavallo L. Organometallics 2016; 35: 2286
  • 28 Wang F, Yuan J, Song F, Li J, Jia Z, Yuan B. Appl. Organomet. Chem. 2013; 27: 319
  • 29 Dai S, Zhou S, Zhang W, Chen C. Macromolecules 2016; 49: 8855
  • 30 Rhinehart JL, Brown LA, Long BK. J. Am. Chem. Soc. 2013; 135: 16 316
  • 31 Sun J, Wang F, Li W, Chen M. RSC Adv. 2017; 7: 55 051
  • 32 Turki T, Guerfel T, Bouachir F. J. Organomet. Chem. 2006; 691: 1857
  • 33 Barta JM, Díez-González S. Molecules 2013; 18: 8919
  • 34 Liu Y, Yang L. Chin. J. Chem. 2015; 33: 473
  • 35 Biancalana L, Batchelor LK, Dyson PJ, Zacchini S, Schoch S, Pampaloni G, Marchetti F. New J. Chem. 2018; 42: 17 453
  • 36 Peppas A, Papadaki E, Schnakenburg G, Magrioti V, Philippopoulos AI. Polyhedron 2019; 171: 412
  • 37 Cherkasov VK, Druzhkov NO, Kocherova TN, Shavyrin AS, Fukin GK. Tetrahedron 2012; 68: 1422
  • 38 Seraya E, Luan Z, Law M, Heyduk AF. Inorg. Chem. 2015; 54: 7571
  • 39 Dong C, Dickie DA, Maio WA, Manz TA. ACS Omega 2018; 3: 16 858
  • 40 Abakumov GA, Cherkasov VK, Druzhkov NO, Kurskii YA, Fukin GK, Abakumova LG, Kocherova TN. Synth. Commun. 2006; 36: 3241
  • 41 Chen F.-M, Lu D.-D, Hu L.-Q, Huang J, Liu F.-S. Org. Biomol. Chem. 2017; 15: 5731
  • 42 Brown LA, Wekesa FS, Unruh DK, Findlater M, Long BK. J. Polym. Sci., Part A: Polym. Chem. 2017; 55: 2824
  • 43 Xu S.-y, Chen X.-m, Huang L.-c, Li F, Gao W. Polyhedron 2019; 164: 146
  • 44 Gao B, Gao W, Wu Q, Luo X, Zhang J, Su Q, Mu Y. Organometallics 2011; 30: 5480
  • 45 Gasperini M, Ragaini F, Cenini S. Organometallics 2002; 21: 2950
  • 46 Guo L, Kong W, Xu Y, Yang Y, Ma R, Cong L, Dai S, Liu Z. J. Organomet. Chem. 2018; 859: 58
  • 47 Rizzo RC, Udier-Blagovicë M, Wang D.-P, Watkins EK, Kroeger Smith MB, Smith RH, Tirado-Rives J, Jorgensen WL. J. Med. Chem. 2002; 45: 2970
  • 48 Su D.-S, Markowitz MK, DiPardo RM, Murphy KL, Harrell CM, O’Malley SS, Ransom RW, Chang RSL, Ha S, Hess FJ, Pettibone DJ, Mason GS, Boyce S, Freidinger RM, Bock MG. J. Am. Chem. Soc. 2003; 125: 7516
  • 49 Pan Y, Chen C, Xu X, Zhao H, Han J, Li H, Xu L, Fan Q, Xiao J. Green Chem. 2018; 20: 403
  • 50 Abraham CJ, Paull DH, Scerba MT, Grebinski JW, Lectka T. J. Am. Chem. Soc. 2006; 128: 13 370
  • 51 Mahatthananchai J, Bode JW. Acc. Chem. Res. 2014; 47: 696
  • 52 Newton CG, Wang S.-G, Oliveira CC, Cramer N. Chem. Rev. 2017; 117: 8908