Fernández, E. et al.: 2021 Science of Synthesis, 2021/2: Knowledge Updates 2021/2 DOI: 10.1055/sos-SD-127-00466
Knowledge Updates 2021/2

27.28 Product Class 28: β-Diketimines (1,3-Diimines)

More Information

Book

Editors: Fernández, E.; Huang, Z.; Jiang, X.; Koch, G.; Marschner, C.; Wang, M.

Authors: Chand, K. ; Davies, G. H. M.; Dorairaj, D. P.; Guo, R.; Hsu, S. C. N. ; Isovitsch, R.; Jiang, X.; Růžička, A.; Sirvinskas, M.; Takeda, N.; Trofimova, A.; Umesh; Vrána, J.; Wang, M.; Wisniewski, S. R.; Xiong, Y.; Ye, Z.-S.; Yudin, A. K.; Zhang, G. Z.

Title: Knowledge Updates 2021/2

Print ISBN: 9783132442061; Online ISBN: 9783132442085; Book DOI: 10.1055/b000000477

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Knowledge Updates



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

β-Diketimines, encountered frequently as “nacnac” ligands, have emerged as popular motifs among other ancillary supports. There has been a great deal of interest in these compounds as supporting ligands because of their strong binding to metal ions, their tunable steric and electronic effects, and their diversity in terms of bonding modes. A classical synthetic approach towards β-diketimines is direct condensation of pentane-2,4-diones (and 1,3-diketone analogues) with suitable amines in the presence of an acid source. Recent developments involve the use of molecular sieves to avoid purification problems and to improve yields. Herein, a thorough survey of the synthetic approaches to β-diketimine ligands and their metal complexes, and applications in coordination chemistry, has been compiled.

 
  • 1 Parks JE, Holm RH. Inorg. Chem. 1968; 7: 1408
  • 2 McGeachin SG. Can. J. Chem. 1968; 46: 1903
  • 3 Bourget-Merle L, Lappert MF, Severn JR. Chem. Rev. 2002; 102: 3031
  • 4 Mindiola DJ. Acc. Chem. Res. 2006; 39: 813
  • 5 Holland PL. Acc. Chem. Res. 2008; 41: 905
  • 6 Feldman J, McLain SJ, Parthasarathy A, Marshall WJ, Calabrese JC, Arthur SD. Organometallics 1997; 16: 1514
  • 7 Holland PL, Tolman WB. J. Am. Chem. Soc. 1999; 121: 7270
  • 8 Holland PL, Tolman WB. J. Am. Chem. Soc. 2000; 122: 6331
  • 9 Yokota S, Tachi Y, Nishiwaki N, Ariga M, Itoh S. Inorg. Chem. 2001; 40: 5316
  • 10 Shimokawa C, Tachi Y, Nishiwaki N, Ariga M, Itoh S. Bull. Chem. Soc. Jpn. 2006; 79: 118
  • 11 Schulz S, Schuchmann D, Westphal U, Bolte M. Organometallics 2009; 28: 1590
  • 12 Julia M. Ann. Chim. (Paris) 1950; 5: 595 Chem. Abstr. 1952; 46: 7035d
  • 13 Arthur SD, Bennett MA, Brookhart MS, Coughlin EB, Feldman J, Ittel SD, Johnson LK, Killian CM, Kreutzer KA, McCord EF, McLain SJ, Parthasarathy A, Tempel DJ. WO 9 623 010A2, 1996
  • 14 Clegg W, Cope EK, Edwards AJ, Mair FS. Inorg. Chem. 1998; 37: 2317
  • 15 Oguadinma PO, Schaper F. Organometallics 2009; 28: 4089
  • 16 Park K.-H, Bradley AZ, Thompson JS, Marshall WJ. Inorg. Chem. 2006; 45: 8480
  • 17 Morozova NB, Gelfond NV, Liskovskaya TI, Stabnikov PA, Semyannikov PP, Trubin SV, Mischenko AV, Igumenov IK, Norman JA. Proc.–Electrochem. Soc. 2005; 2005–09: 667
  • 18 Franceschini PL, Morstein M, Berke H, Schmalle HW. Inorg. Chem. 2003; 42: 7273
  • 19 El-Zoghbi I, Latreche S, Schaper F. Organometallics 2010; 29: 1551
  • 20 Oguadinma PO, Schaper F. Can. J. Chem. 2010; 88: 472
  • 21 Xu X, Chen Y, Zou G, Sun J. Dalton Trans. 2010; 39: 3952
  • 22 Dai Z, Zhang J, Gao Y, Tang N, Huang Y, Wu J. Catal. Sci. Technol. 2013; 3: 3268
  • 23 Chuang W.-J, Chen H.-Y, Chen W.-T, Chang H.-Y, Chiang MY, Chen H.-Y, Hsu SCN. RSC Adv. 2016; 6: 36 705
  • 24 Hill LMR, Gherman BF, Aboelella NW, Cramer CJ, Tolman WB. Dalton Trans. 2006; 4944
  • 25 Hong S, Gupta AK, Tolman WB. Inorg. Chem. 2009; 48: 6323
  • 26 Chuang W.-J, Hsu S.-P, Chand K, Yu F.-L, Tsai C.-L, Tseng Y.-H, Lu Y.-H, Kuo J.-Y, Carey JR, Chen H.-Y, Chen H.-Y, Chiang MY, Hsu SCN. Inorg. Chem. 2017; 56: 2722
  • 27 Jazdzewski BA, Holland PL, Pink M, Young VG, Spencer DJE, Tolman WB. Inorg. Chem. 2001; 40: 6097
  • 28 Badiei YM, Warren TH. J. Organomet. Chem. 2005; 690: 5989
  • 29 Oguadinma PO, Schaper F. Inorg. Chim. Acta 2009; 362: 570
  • 30 Oguadinma PO, Schaper F. Organometallics 2009; 28: 6721
  • 31 Morris WD, Wolczanski PT, Sutter J, Meyer K, Cundari TR, Lobkovsky EB. Inorg. Chem. 2014; 53: 7467
  • 32 Chand K, Tsai C.-L, Chen H.-Y, Ching W.-M, Hsu S.-P, Carey JR, Hsu SCN. Eur. J. Inorg. Chem. 2018; 1093
  • 33 El-Zoghbi I, Ased A, Oguadinma PO, Tchirioua E, Schaper F. Can. J. Chem. 2010; 88: 1040
  • 34 Budzelaar PHM, Moonen NNP, de Gelder R, Smits JMM, Gal AW. Eur. J. Inorg. Chem. 2000; 753
  • 35 Tang Y, Chen Z, Ji G, Sun X, Xu C, Li J. EP 3 037 409A1, 2016
  • 36 Grayson JD, Partridge BM. ACS Catal. 2019; 9: 4296
  • 37 Patil SA, Fahlman BD. J. Coord. Chem. 2015; 68: 27
  • 38 Patil SA, Medina PA, Ziller JW, Fahlman BD. SpringerPlus 2013; 2: 32
  • 39 Oskam JH, Fox HH, Yap KB, McConville DH, O’Dell R, Lichtenstein BJ, Schrock RR. J. Organomet. Chem. 1993; 459: 185
  • 40 Rajendran NM, Haleel A, Reddy ND. Organometallics 2014; 33: 217
  • 41 Moore DR, Cheng M, Lobkovsky EB, Coates GW. J. Am. Chem. Soc. 2003; 125: 11 911
  • 42 Carey DT, Cope-Eatough EK, Vilaplana-Mafé E, Mair FS, Pritchard RG, Warren JE, Woods RJ. Dalton Trans. 2003; 1083
  • 43 Gassman PG, Gruetzmacher GD. J. Am. Chem. Soc. 1974; 96: 5487
  • 44 Gassman PG, Drewes HR. J. Am. Chem. Soc. 1974; 96: 3002
  • 45 Aboelella NW, Gherman BF, Hill LMR, York JT, Holm N, Young VG, Cramer CJ, Tolman WB. J. Am. Chem. Soc. 2006; 128: 3445
  • 46 Laitar DS, Mathison CJN, Davis WM, Sadighi JP. Inorg. Chem. 2003; 42: 7354
  • 47 Takamura S, Yoshimiya T, Kameyama S, Nishida A, Yamamoto H, Noguchi M. Synthesis 2000; 637
  • 48 Nishiwaki N, Tohda Y, Ariga M. Bull. Chem. Soc. Jpn. 1996; 69: 1997
  • 49 Shimokawa C, Yokota S, Tachi Y, Nishiwaki N, Ariga M, Itoh S. Inorg. Chem. 2003; 42: 8395
  • 50 Piesik DF.-J, Range S, Harder S. Organometallics 2008; 27: 6178
  • 51 Barnes D, Brown GL, Brownhill M, German I, Herbert CJ, Jolleys A, Kennedy AR, Liu B, McBride K, Mair FS, Pritchard RG, Sanders A, Warren JE. Eur. J. Inorg. Chem. 2009; 1219
  • 52 Alnajrani MN, Mair FS. Dalton Trans. 2016; 45: 10 435
  • 53 Hamedani NG, Arabi H, Zohuri GH, Mair FS, Jolleys A. J. Polym. Sci., Part A: Polym. Chem. 2013; 51: 1520
  • 54 Holm RH, O’Connor M. Prog. Inorg. Chem. 1971; 241
  • 55 Bradley AZ, Thorn DL, Glover GV. J. Org. Chem. 2008; 73: 8673
  • 56 Kim W.-K, Fevola MJ, Liable-Sands LM, Rheingold AL, Theopold KH. Organometallics 1998; 17: 4541
  • 57 Gibson VC, Newton C, Redshaw C, Solan GA, White AJP, Williams DJ, Maddox PJ. Chem. Commun. (Cambridge) 1998; 1651
  • 58 Yao Y, Zhang Y, Shen Q, Yu K. Organometallics 2002; 21: 819
  • 59 Yao Y.-M, Luo Y.-J, Jiao R, Shen Q, Yu K.-B, Weng L.-H. Polyhedron 2003; 22: 441
  • 60 Klementyeva SV, Afonin MY, Bogomyakov AS, Gamer MT, Roesky PW, Konchenko SN. Eur. J. Inorg. Chem. 2016; 3666
  • 61 Li D, Li S, Cui D, Zhang X. Organometallics 2010; 29: 2186
  • 62 Bambirra S, Perazzolo F, Boot SJ, Sciarone TJJ, Meetsma A, Hessen B. Organometallics 2008; 27: 704
  • 63 Yao Y, Zhang Y, Zhang Z, Shen Q, Yu K. Organometallics 2003; 22: 2876
  • 64 Yao Y, Xue M, Luo Y, Zhang Z, Jiao R, Zhang Y, Shen Q, Wong W, Yu K, Sun J. J. Organomet. Chem. 2003; 678: 108
  • 65 Neculai AM, Neculai D, Roesky HW, Magull J. Polyhedron 2004; 23: 183
  • 66 Neculai D, Roesky HW, Neculai AM, Magull J, Herbst-Irmer R, Walfort B, Stalke D. Organometallics 2003; 22: 2279
  • 67 Neculai D, Roesky HW, Neculai AM, Magull J, Schmidt H.-G, Noltemeyer M. J. Organomet. Chem. 2002; 643: 47
  • 68 Liddle ST, Arnold PL. Dalton Trans. 2007; 3305
  • 69 Kenward AL, Piers WE, Parvez M. Organometallics 2009; 28: 3012
  • 70 Johnson KRD, Côté AP, Hayes PG. J. Organomet. Chem. 2010; 695: 2747
  • 71 Izod K, Liddle ST, Clegg W. Inorg. Chem. 2004; 43: 214
  • 72 Windorff CJ, Dumas MT, Ziller JW, Gaunt AJ, Kozimor SA, Evans WJ. Inorg. Chem. 2017; 56: 11 981
  • 73 Mironova OA, Sukhikh TS, Konchenko SN, Pushkarevsky NA. Polyhedron 2019; 159: 337
  • 74 Lundberg JO, Gladwin MT, Weitzberg E. Nat. Rev. Drug Discovery 2015; 14: 623
  • 75 Maia LB, Moura JJG. Chem. Rev. 2014; 114: 5273
  • 76 Shiva S, Wang X, Ringwood LA, Xu X, Yuditskaya S, Annavajjhala V, Miyajima H, Hogg N, Harris ZL, Gladwin MT. Nat. Chem. Biol. 2006; 2: 486
  • 77 Sakhaei Z, Kundu S, Donnelly JM, Bertke JA, Kim WY, Warren TH. Chem. Commun. (Cambridge) 2017; 53: 549
  • 78 Spencer DJE, Aboelella NW, Reynolds AM, Holland PL, Tolman WB. J. Am. Chem. Soc. 2002; 124: 2108
  • 79 Spencer DJE, Reynolds AM, Holland PL, Jazdzewski BA, Duboc-Toia C, Le Pape L, Yokota S, Tachi Y, Itoh S, Tolman WB. Inorg. Chem. 2002; 41: 6307
  • 80 Lappert MF, Pearce R. J. Chem. Soc., Chem. Commun. 1973; 24
  • 81 Jarvis JAJ, Kilbourn BT, Pearce R, Lappert MF. J. Chem. Soc., Chem. Commun. 1973; 475
  • 82 Jarvis JAJ, Pearce R, Lappert MF. J. Chem. Soc., Dalton Trans. 1977; 999
  • 83 Aboelella NW, Lewis EA, Reynolds AM, Brennessel WW, Cramer CJ, Tolman WB. J. Am. Chem. Soc. 2002; 124: 10 660
  • 84 Aboelella NW, Kryatov SV, Gherman BF, Brennessel WW, Young VG, Sarangi R, Rybak-Akimova EV, Hodgson KO, Hedman B, Solomon EI, Cramer CJ, Tolman WB. J. Am. Chem. Soc. 2004; 126: 16 896
  • 85 Allen SD, Moore DR, Lobkovsky EB, Coates GW. J. Organomet. Chem. 2003; 683: 137
  • 86 Tong R, Cheng J. Macromolecules 2012; 45: 2225
  • 87 Doyle DJ, Hitchcock PB, Lappert MF, Li G. J. Organomet. Chem. 2009; 694: 2611
  • 88 Zhang P, Zhao M, Pang W, Chen C. Sci. China: Chem. 2019; 62: 475
  • 89 Cheng M, Attygalle AB, Lobkovsky EB, Coates GW. J. Am. Chem. Soc. 1999; 121: 11 583
  • 90 Chamberlain BM, Cheng M, Moore DR, Ovitt TM, Lobkovsky EB, Coates GW. J. Am. Chem. Soc. 2001; 123: 3229
  • 91 Phanopoulos A, Warren M, White AJP, Horton A, Crimmin MR. Dalton Trans. 2017; 46: 2077
  • 92 Phanopoulos A, Leung AHM, Yow S, Palomas D, White AJP, Hellgardt K, Horton A, Crimmin MR. Dalton Trans. 2017; 46: 2081
  • 93 Karlin KD, Zubieta J. Copper Coordination Chemistry: Biochemical and Inorganic Perspectives. Adenine; Guilderland, NY 1983
  • 94 Lippard SJ, Berg JM. Principles of Bioinorganic Chemistry. University Science Books; Mill Valley, CA 1994
  • 95 Tyeklar Z, Karlin KD. Acc. Chem. Res. 1989; 22: 241
  • 96 Cramer CJ, Tolman WB. Acc. Chem. Res. 2007; 40: 601
  • 97 Solomon EI, Ginsbach JW, Heppner DE, Kieber-Emmons MT, Kjaergaard CH, Smeets PJ, Tian L, Woertink JS. Faraday Discuss. 2011; 148: 11
  • 98 Cullinane J, Jolleys A, Mair FS. Dalton Trans. 2013; 42: 11 971
  • 99 Alnajrani MN, Mair FS. Dalton Trans. 2014; 43: 15 727
  • 100 Thompson JS, Bradley AZ, Park K.-H, Dobbs KD, Marshall W. Organometallics 2006; 25: 2712
  • 101 Böhme H, Tränka M. Arch. Pharm. (Weinheim, Ger.) 1985; 318: 911
  • 102 Dorman LC. Tetrahedron Lett. 1966; 7: 459
  • 103 Vela J, Zhu L, Flaschenriem CJ, Brennessel WW, Lachicotte RJ, Holland PL. Organometallics 2007; 26: 3416
  • 104 Hope JM, Wilson JJ, Lippard SJ. Dalton Trans. 2013; 42: 3176
  • 105 Marlier EE, Sadowsky D, Cramer CJ, McNeill K. Inorg. Chim. Acta 2011; 369: 173
  • 106 Marlier EE, Ulrich BA, McNeill K. Inorg. Chem. 2012; 51: 2079
  • 107 Williams VA, Wolczanski PT, Sutter J, Meyer K, Lobkovsky EB, Cundari TR. Inorg. Chem. 2014; 53: 4459
  • 108 Costes J.-P. Polyhedron 1987; 6: 2169
  • 109 Budzelaar PHM, de Gelder R, Gal AW. Organometallics 1998; 17: 4121
  • 110 Espinal-Viguri M, King AK, Lowe JP, Mahon MF, Webster RL. ACS Catal. 2016; 6: 7892
  • 111 Fisher KJ. Tetrahedron Lett. 1970; 11: 2613
  • 112 Whitehorne TJJ, Vabre B, Schaper F. Dalton Trans. 2014; 43: 6339
  • 113 Wallace KJ, Hanes R, Anslyn E, Morey J, Kilway KV, Siegel J. Synthesis 2005; 2080
  • 114 Guillet GL, Sloane FT, Ermert DM, Calkins MW, Peprah MK, Knowles ES, Čižmár E, Abboud KA, Meisel MW, Murray LJ. Chem. Commun. (Cambridge) 2013; 49: 6635
  • 115 Hennrich G, Anslyn EV. Chem.–Eur. J. 2002; 8: 2218
  • 116 De Rycke N, Couty F, David ORP. Tetrahedron Lett. 2012; 53: 462
  • 117 Chi PB, Kober F. Z. Anorg. Allg. Chem. 1984; 513: 35
  • 118 Baidina IA, Stabnikov PA, Vasiliev AD, Gromilov SA, Igumenov IK. J. Struct. Chem. (Engl. Transl.) 2004; 45: 671
  • 119 Yoon S, Lee B, Lee E, Lee IM. Bull. Korean Chem. Soc. 2013; 34: 2871
  • 120 Stalzer MM, Lohr TL, Marks TJ. Inorg. Chem. 2018; 57: 3017
  • 121 Latreche S, Schaper F. Inorg. Chim. Acta 2011; 365: 49
  • 122 Khusniyarov MM, Bill E, Weyhermüller T, Bothe E, Wieghardt K. Angew. Chem. Int. Ed. 2011; 50: 1652
  • 123 Olmstead MM, Power PP, Shoner SC. Inorg. Chem. 1991; 30: 2547
  • 124 Andersen RA, Faegri Jr K, Green JC, Haaland A, Lappert MF, Leung WP, Rypdal K. Inorg. Chem. 1988; 27: 1782
  • 125 Carlin RL. Magnetochemistry. Springer; Berlin 1986
  • 126 Figgis BN, Hitchman MA. Ligand Field Theory and Its Applications. Wiley-VCH; Weinheim, Germany 2000
  • 127 Drouin F, Oguadinma PO, Whitehorne TJJ, Prud’homme RE, Schaper F. Organometallics 2010; 29: 2139
  • 128 Chisholm MH, Choojun K, Gallucci JC, Wambua PM. Chem. Sci. 2012; 3: 3445
  • 129 Xia Z, Fang H, Zhang X, Molokeev MS, Gautier R, Yan Q, Wei S.-H, Poeppelmeier KR. Chem. Mater. 2018; 30: 1121
  • 130 Coughlan C, Ibáñez M, Dobrozhan O, Singh A, Cabot A, Ryan KM. Chem. Rev. 2017; 117: 5865
  • 131 Llorente VB, Dzhagan VM, Gaponik N, Iglesias RA, Zahn DRT, Lesnyak V. J. Phys. Chem. 2017; 121: 18 244
  • 132 Niezgoda JS, Rosenthal SJ. ChemPhysChem 2016; 17: 645
  • 133 Comin A, Manna L. Chem. Soc. Rev. 2014; 43: 3957
  • 134 Kriegel I, Jiang C, Rodríguez-Fernaëndez J, Schaller RD, Talapin DV, Da Como E, Feldmann J. J. Am. Chem. Soc. 2012; 134: 1583
  • 135 Singh A, Singh S, Levcenko S, Unold T, Laffir F, Ryan KM. Angew. Chem. Int. Ed. 2013; 52: 9120
  • 136 Cook BJ, Di Francesco GN, Ferreira RB, Lukens JT, Silberstein KE, Keegan BC, Catalano VJ, Lancaster KM, Shearer J, Murray LJ. Inorg. Chem. 2018; 57: 11 382
  • 137 Chen Y, Lu E, Gan W. CN 101 492 390, 2009
  • 138 Asano E, Hatayama Y, Kurisu N, Ohtani A, Hashimoto T, Kurihara Y, Ueda K, Ishihara S, Nagao H, Yamaguchi Y. Dalton Trans. 2018; 47: 8003
  • 139 Zhu X, Li Y, Guo D, Wang S, Wei Y, Zhou S. Dalton Trans. 2018; 47: 3947
  • 140 Weerawardhana EA, Pena A, Zeller M, Lee W.-T. Inorg. Chim. Acta 2017; 460: 29
  • 141 Hayes PG, Piers WE, McDonald R. J. Am. Chem. Soc. 2002; 124: 2132
  • 142 Hayes PG, Piers WE, Parvez M. J. Am. Chem. Soc. 2003; 125: 5622
  • 143 Lu E, Li Y, Chen Y. Chem. Commun. (Cambridge) 2010; 46: 4469
  • 144 Xu P, Yao Y, Xu X. Chem.–Eur. J. 2017; 23: 1263
  • 145 Bourget-Merle L, Hitchcock PB, Lappert MF. J. Organomet. Chem. 2004; 689: 4357
  • 146 Vitanova DV, Hampel F, Hultzsch KC. Dalton Trans. 2005; 1565
  • 147 Kretschmer R. Chem.–Eur. J. 2020; 26: 2099
  • 148 Desat ME, Kretschmer R. Chem.–Eur. J. 2018; 24: 12 397
  • 149 Meerwein H. Org. Synth., Coll. Vol. V 1973; 1080
  • 150 Pietrzak T, Korzyński MD, Justyniak I, Zelga K, Kornowicz A, Ochal Z, Lewiński J. Chem.–Eur. J. 2017; 23: 7997
  • 151 El-Zoghbi I, Whitehorne TJJ, Schaper F. Dalton Trans. 2013; 42: 9376
  • 152 Louloudi M, Mitopoulou K, Evaggelou E, Deligiannakis Y, Hadjiliadis N. J. Mol. Catal. A: Chem. 2003; 198: 231
  • 153 Xu X, Xu X, Chen Y, Sun J. Organometallics 2008; 27: 758
  • 154 Hitchcock PB, Lappert MF, Linnolahti M, Sablong R, Severn JR. J. Organomet. Chem. 2009; 694: 667
  • 155 Bernskoetter WH, Lobkovsky E, Chirik PJ. Organometallics 2005; 24: 6250
  • 156 Bernskoetter WH, Lobkovsky E, Chirik PJ. Chem. Commun. (Cambridge) 2004; 764
  • 157 Nikiforov GB, Roesky HW, Labahn T, Vidovic D, Neculai D. Eur. J. Inorg. Chem. 2003; 433
  • 158 Neculai AM, Roesky HW, Neculai D, Magull J. Organometallics 2001; 20: 5501
  • 159 Yu Y, Smith JM, Flaschenriem CJ, Holland PL. Inorg. Chem. 2006; 45: 5742
  • 160 Al-Afyouni MH, Suturina E, Pathak S, Atanasov M, Bill E, DeRosha DE, Brennessel WW, Neese F, Holland PL. J. Am. Chem. Soc. 2015; 137: 10 689
  • 161 Park KJ, Park JH, Lee SB, Lee DY, Kim KN, Kim KM. Key Eng. Mater. 2005; 284–286: 933–936
  • 162 Sedai B, Heeg MJ, Winter CH. Organometallics 2009; 28: 1032
  • 163 Shaviv E, Botoshansky M, Eisen MS. J. Organomet. Chem. 2003; 683: 165
  • 164 Cortright SB, Coalter JN, Pink M, Johnston JN. Organometallics 2004; 23: 5885
  • 165 Rodriguez MM, Bill E, Brennessel WW, Holland PL. Science (Washington, D. C.) 2011; 334: 780
  • 166 Yao S, Driess M. Acc. Chem. Res. 2012; 45: 276
  • 167 Wiese S, Aguila MJB, Kogut E, Warren TH. Organometallics 2013; 32: 2300
  • 168 Gong S, Ma H, Huang J. J. Organomet. Chem. 2008; 693: 3509
  • 169 Schmid M, Guillaume SM, Roesky PW. Organometallics 2014; 33: 5392
  • 170 Hao H, Cui C, Roesky HW, Bai G, Schmidt H.-G, Noltemeyer M. Chem. Commun. (Cambridge) 2001; 1118
  • 171 Spielmann J, Piesik D, Wittkamp B, Jansen G, Harder S. Chem. Commun. (Cambridge) 2009; 3455
  • 172 Wang Y, Quillian B, Wei P, Wang H, Yang X.-J, Xie Y, King RB, Schleyer PvR, Schaefer HF, Robinson GH. J. Am. Chem. Soc. 2005; 127: 11 944
  • 173 Wiegand A.-K, Rit A, Okuda J. Coord. Chem. Rev. 2016; 314: 71
  • 174 Chen M, Jiang S, Maron L, Xu X. Dalton Trans. 2019; 48: 1931
  • 175 Desat ME, Gärtner S, Kretschmer R. Chem. Commun. (Cambridge) 2017; 53: 1510
  • 176 Pardoe JAJ, Downs AJ. Chem. Rev. 2007; 107: 2
  • 177 Peppe C, Tuck DG, Victoriano L. J. Chem. Soc., Dalton Trans. 1982; 2165