Liu, G. : 2023 Science of Synthesis, 2023/1: Knowledge Updates 2023/1 DOI: 10.1055/sos-SD-147-00035
Knowledge Updates 2023/1

47.1.2.1.5 Synthesis of Alkenes by Cross-Coupling and Heck Reactions

Weitere Informationen

Buch

Herausgeber: Liu, G.

Autoren: Chen, P. ; Cheng, Z.; Gong, L.-Z. ; Ho, C.-Y.; Jiang, R. ; Jie, X. ; Lei, A. ; Lin, Z.; Liu, B.; Liu, G. ; Liu, Q. ; Liu, X.; Lu, Z. ; Raja, D.; Sayed, M. ; Su, W. ; Tang, S. ; Tao, R.; Wang, J. ; Wang, K. ; Wang, P.-S. ; Yang, P.; You, S.-L. ; Zhao, Y.; Zheng, Y.

Titel: Knowledge Updates 2023/1

Print ISBN: 9783132455061; Online ISBN: 9783132455085; Buch-DOI: 10.1055/b000000844

Fachgebiete: Organische Chemie;Chemische Reaktionen, Katalyse;Organometallchemie;Chemische Labormethoden, Stöchiometrie

Science of Synthesis Knowledge Updates



Übergeordnete Publikation

Titel: Science of Synthesis

DOI: 10.1055/b-00000101

Reihenherausgeber: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Typ: Mehrbändiges Werk

 


Abstract

Since their discovery, Heck and cross-coupling reactions have become essential for catalytic alkene synthesis. Selected homogeneous methods for non-aromatic and unactivated alkene synthesis by catalytic alkenylation are reviewed herein (ca. 2008–2020). By using new combinations of ligands, additives, co-catalysts, and transition metals, significant advances and new mechanistic insights have been revealed recently. New strategies for accessing a broader substrate scope, milder reaction conditions, higher functional-group compatibility, and highly stereoselective synthesis are highlighted.

 
  • 1 Jana R, Pathak TP, Sigman MS. Chem. Rev. 2011; 111: 1417
  • 2 Swift EC, Jarvo ER. Tetrahedron 2013; 69: 5799
  • 3 Dahadha AA. ARKIVOC 2019; 106
  • 4 Korch KM, Watson DA. Chem. Rev. 2019; 119: 8192
  • 5 Cherney AH, Kadunce NT, Reisman SE. Chem. Rev. 2015; 115: 9587
  • 6 Xia Y, Qiu D, Wang J. Chem. Rev. 2017; 117: 13 810
  • 7 Mizoroki T, Mori K, Ozaki A. Bull. Chem. Soc. Jpn. 1971; 44: 581
  • 8 Heck KF, Nolley Jr JP. J. Org. Chem. 1972; 37: 2320
  • 9 Kobetić R, Biliškov N. Kem. Ind. 2007; 56: 391
  • 10 Heravi MM, Moradi R, Malmir M. Curr. Org. Chem. 2018; 22: 165
  • 11 Race NJ, Hazelden IR, Faulkner A, Bower JF. Chem. Sci. 2017; 8: 5248
  • 12 Dounay AB, Overman LE. Chem. Rev. 2003; 103: 2945
  • 13 McCartney D, Guiry PJ. Chem. Soc. Rev. 2011; 40: 5122
  • 14 Cacchi S, Fabrizi G. Chem. Rev. 2005; 105: 2873
  • 15 Zeni G, Larock RC. Chem. Rev. 2006; 106: 4644; Chem. Rev. 2007; 107: 303
  • 16 Kikukawa K, Nagira K, Wada F, Matsuda T. Tetrahedron 1981; 37: 31
  • 17 Miura M, Hashimoto H, Itoh K, Nomura M. Tetrahedron Lett. 1989; 30: 975
  • 18 Kang S.-K, Choi S.-C, Ryu H.-C, Yamaguchi T. J. Org. Chem. 1998; 63: 5748
  • 19 Moriarty RM, Epa WR, Awasthi AK. J. Am. Chem. Soc. 1991; 113: 6315
  • 20 Blaser H.-U, Spencer A. J. Organomet. Chem. 1982; 233: 267
  • 21 Jeffery T. Tetrahedron 1996; 52: 10 113
  • 22 Jagtap S. Catalysts 2017; 7: 267
  • 23 Nakashima Y, Hirata G, Sheppard TD, Nishikata T. Asian J. Org. Chem. 2020; 9: 480
  • 24 Wang S.-S, Yang G.-Y. Catal. Sci. Technol. 2016; 6: 2862
  • 25 Kwiatkowski MR, Alexanian EJ. Acc. Chem. Res. 2019; 52: 1134
  • 26 Watson DA, Comprehensive Chirality Carreira EM, Yamamoto H. Elsevier Amsterdam 2012; 2. 648–684
  • 27 Bräse S, de Meijere A, Metal-Catalyzed Cross-Coupling Reactions de Meijere A, Diederich F. Wiley-VCH Weinheim 2004;
  • 28 Firmansjah L, Fu GC. J. Am. Chem. Soc. 2007; 129: 11 340
  • 29 Liu Q, Dong X, Li J, Xiao J, Dong Y, Liu H. ACS Catal. 2015; 5: 6111
  • 30 Zou Y, Zhou J. Chem. Commun. (Cambridge) 2014; 50: 3725
  • 31 McMahon CM, Alexanian EJ. Angew. Chem. Int. Ed. 2014; 53: 5974
  • 32 Chuentragool P, Yadagiri D, Morita T, Sarkar S, Parasram M, Wang Y, Gevorgyan V. Angew. Chem. Int. Ed. 2019; 58: 1794
  • 33 Gharpure SJ, Anuradha D. Org. Lett. 2017; 19: 6136
  • 34 Sakaguchi Y, Yamada S, Konno T, Agou T, Kubota T. J. Org. Chem. 2017; 82: 1618
  • 35 Thornbury RT, Saini V, Fernandes TdA, Santiago CB, Talbot EPA, Sigman MS, McKenna JM, Toste FD. Chem. Sci. 2017; 8: 2890
  • 36 Zhang J, Yan Y, Hu R, Li T, Bai W.-J, Yang Y. Angew. Chem. Int. Ed. 2020; 59: 2860
  • 37 Das S, Hong D, Chen Z, She Z, Hersh WH, Subramaniam G, Chen Y. Org. Lett. 2015; 17: 5578
  • 38 Gowala TN, Pabba J. Tetrahedron Lett. 2015; 56: 1801
  • 39 Bloome KS, McMahen RL, Alexanian EJ. J. Am. Chem. Soc. 2011; 133: 20 146
  • 40 Venning ARO, Kwiatkowski MR, Roque Peña JE, Lainhart BC, Guruparan AA, Alexanian EJ. J. Am. Chem. Soc. 2017; 139: 11 595
  • 41 Liu C, Tang S, Liu D, Yuan J, Zheng L, Meng L, Lei A. Angew. Chem. Int. Ed. 2012; 51: 3638
  • 42 Nishikata T, Noda Y, Fujimoto R, Sakashita T. J. Am. Chem. Soc. 2013; 135: 16 372
  • 43 Zhu K, Dunne J, Shaver MP, Thomas SP. ACS Catal. 2017; 7: 2353
  • 44 Kurandina D, Rivas M, Radzhabov M, Gevorgyan V. Org. Lett. 2018; 20: 357
  • 45 Morrill C, Grubbs RH. J. Org. Chem. 2003; 68: 6031
  • 46 Morimoto M, Miura T, Murakami M. Angew. Chem. Int. Ed. 2015; 54: 12 659
  • 47 Westcott SA, Marder TB, Baker RT. Organometallics 1993; 12: 975
  • 48 Selander N, Willy B, Szabó KJ. Angew. Chem. Int. Ed. 2010; 49: 4051
  • 49 Reid WB, Spillane JJ, Krause SB, Watson DA. J. Am. Chem. Soc. 2016; 138: 5539
  • 50 Onozawa S.-y, Tanaka M. Organometallics 2001; 20: 2956
  • 51 Daini M, Suginome M. Chem. Commun. (Cambridge) 2008; 5224
  • 52 Nakada K, Daini M, Suginome M. Chem. Lett. 2013; 42: 538
  • 53 Coapes RB, Souza FES, Fox MA, Batsanov AS, Goeta AE, Yufit DS, Leech MA, Howard JAK, Scott AJ, Clegg W, Marder TB. J. Chem. Soc., Dalton Trans. 2001; 123: 1201
  • 54 Reid WB, Watson DA. Org. Lett. 2018; 20: 6832
  • 55 Martin SES, Watson DA. Synlett 2013; 24: 2177
  • 56 Reid WB, McAtee JR, Watson DA. Organometallics 2019; 38: 3796
  • 57 Yamashita H, Kobayashi T.-a, Hayashi T, Tanaka M. Chem. Lett. 1991; 761
  • 58 McAtee JR, Martin SES, Ahneman DT, Johnson KA, Watson DA. Angew. Chem. Int. Ed. 2012; 51: 3663
  • 59 McAtee JR, Yap GPA, Watson DA. J. Am. Chem. Soc. 2014; 136: 10 166
  • 60 Krause SB, McAtee JR, Yap GPA, Watson DA. Org. Lett. 2017; 19: 5641
  • 61 Patel HH, Sigman MS. J. Am. Chem. Soc. 2016; 138: 14 226
  • 62 Yang Z, Zhou J. J. Am. Chem. Soc. 2012; 134: 11 833
  • 63 Lin Lin, Liu L, Fu Y, Luo S.-W, Chen Q, Guo Q.-X. Organometallics 2004; 23: 2114
  • 64 Boldrini GP, Savoia D, Tagliavini E, Trombini C, Umani Ronchi A. J. Organomet. Chem. 1986; 301: C62
  • 65 Gøgsig TM, Kleimark J, Nilsson Lill SO, Korsager S, Lindhardt AT, Norrby P.-O, Skrydstrup T. J. Am. Chem. Soc. 2012; 134: 443
  • 66 Tasker SZ, Gutierrez AC, Jamison TF. Angew. Chem. Int. Ed. 2014; 53: 1858
  • 67 Matsubara R, Gutierrez AC, Jamison TF. J. Am. Chem. Soc. 2011; 133: 19 020
  • 68 Matsubara R, Jamison TF. J. Am. Chem. Soc. 2010; 132: 6880
  • 69 Ehle AR, Zhou Q, Watson MP. Org. Lett. 2012; 14: 1202
  • 70 McAtee JR, Martin SES, Cinderella AP, Reid WB, Johnson KA, Watson DA. Tetrahedron 2014; 70: 4250
  • 71 Millán A, Álvarez de Cienfuegos L, Miguel D, Campaña AG, Cuerva JM. Org. Lett. 2012; 14: 5984
  • 72 Campaña AG, Bazdi B, Fuentes N, Robles R, Cuerva JM, Oltra JE, Porcel S, Echavarren AM. Angew. Chem. Int. Ed. 2008; 47: 7515
  • 73 Kwiatkowski MR, Alexanian EJ. Angew. Chem. Int. Ed. 2018; 57: 16 857
  • 74 Standley EA, Jamison TF. J. Am. Chem. Soc. 2013; 135: 1585
  • 75 RajanBabu TV. Chem. Rev. 2003; 103: 2845
  • 76 Ho C.-Y, He L. Angew. Chem. Int. Ed. 2010; 49: 9182
  • 77 Ho C.-Y, Chan C.-W, He L. Angew. Chem. Int. Ed. 2015; 54: 4512
  • 78 Taylor BLH, Swift EC, Waetzig JD, Jarvo ER. J. Am. Chem. Soc. 2011; 133: 389
  • 79 Taylor BLH, Harris MR, Jarvo ER. Angew. Chem. Int. Ed. 2012; 51: 7790
  • 80 Zhou Q, Srinivas HD, Dasgupta S, Watson MP. J. Am. Chem. Soc. 2013; 135: 3307
  • 81 Harris MR, Konev MO, Jarvo ER. J. Am. Chem. Soc. 2014; 136: 7825
  • 82 Sato Y, Sodeoka M, Shibasaki M. J. Org. Chem. 1989; 54: 4738
  • 83 Carpenter NE, Kucera DJ, Overman LE. J. Org. Chem. 1989; 54: 5846
  • 84 Desrosiers J.-N, Hie L, Biswas S, Zatolochnaya OV, Rodriguez S, Lee H, Grinberg N, Haddad N, Yee NK, Garg NK, Senanayake CH. Angew. Chem. Int. Ed. 2016; 55: 11 921
  • 85 Medina JM, Moreno J, Racine S, Du S, Garg NK. Angew. Chem. Int. Ed. 2017; 56: 6567
  • 86 Branchaud BP, Yu GX. Organometallics 1993; 12: 4262
  • 87 Branchaud BP, Meier MS, Malekzadeh MN. J. Org. Chem. 1987; 52: 212
  • 88 Shukla P, Hsu Y.-C, Cheng C.-H. J. Org. Chem. 2006; 71: 655
  • 89 Weiss ME, Kreis LM, Lauber A, Carreira EM. Angew. Chem. Int. Ed. 2011; 50: 11 125
  • 90 Iyer S, Ramesh C, Sarkar A, Wadgaonkar PP. Tetrahedron Lett. 1997; 38: 8113
  • 91 Li J.-H, Wang D.-P, Xie Y.-X. Tetrahedron Lett. 2005; 46: 4941
  • 92 Yang F, Fu SY, Chu W, Li C, Tong DG. RSC Adv. 2014; 4: 45 838
  • 93 Tang C, Zhang R, Zhu B, Fu J, Deng Y, Tian L, Guan W, Bi X. J. Am. Chem. Soc. 2018; 140: 16 929
  • 94 Zhao B, Shi Z. Angew. Chem. Int. Ed. 2017; 56: 12 727
  • 95 Kotha S, Lahiri K, Kashinath D. Tetrahedron 2002; 58: 9633
  • 96 Corey EJ, Katzenellenbogen JA, Gilman NW, Roman SA, Erickson BW. J. Am. Chem. Soc. 1968; 90: 5618
  • 97 Ganesan A. Drug Discovery Today 2001; 6: 238
  • 98 Jacks TE, Belmont DT, Briggs CA, Horne NM, Kanter GD, Karrick GL, Krikke JJ, McCabe RJ, Mustakis JG, Nanninga TN, Risedorph GS, Seamans RE, Skeean R, Winkle DD, Zennie TM. Org. Process Res. Dev. 2004; 8: 201
  • 99 Itami K, Kamei T, Yoshida J.-i. J. Am. Chem. Soc. 2003; 125: 14 670
  • 100 Tan Z, Negishi E.-i. Angew. Chem. Int. Ed. 2006; 45: 762
  • 101 Bellina F, Carpita A, Rossi R. Synthesis 2004; 2419
  • 102 Shaw BL. New J. Chem. 1998; 22: 77
  • 103 Nunes CM, Steffens D, Monteiro AL. Synlett 2007; 103
  • 104 Xu S, Lee C.-T, Rao H, Negishi E.-i. Adv. Synth. Catal. 2011; 353: 2981
  • 105 Ye N, Dai W.-M. Eur. J. Org. Chem. 2013; 831
  • 106 Makoto S, Norio M, Akira S. Chem. Lett. 1989; 1405
  • 107 Zou G, Reddy YK, Falck JR. Tetrahedron Lett. 2001; 42: 7213
  • 108 Fall Y, Doucet H, Santelli M. Appl. Organomet. Chem. 2008; 22: 503
  • 109 Potter B, Edelstein EK, Morken JP. Org. Lett. 2016; 18: 3286
  • 110 Kirchhoff JH, Netherton MR, Hills ID, Fu GC. J. Am. Chem. Soc. 2002; 124: 13 662
  • 111 Zhou J, Fu GC. J. Am. Chem. Soc. 2004; 126: 1340
  • 112 Nishihara Y, Okada Y, Jiao J, Suetsugu M, Lan M.-T, Kinoshita M, Iwasaki M, Takagi K. Angew. Chem. Int. Ed. 2011; 50: 8660
  • 113 Molander GA, Argintaru OA. Org. Lett. 2014; 16: 1904
  • 114 Di Franco T, Epenoy A, Hu X. Org. Lett. 2015; 17: 4910
  • 115 Nazari SH, Bourdeau JE, Talley MR, Valdivia-Berroeta GA, Smith SJ, Michaelis DJ. ACS Catal. 2018; 8: 86
  • 116 Li W, Yu S, Li J, Zhao Y. Angew. Chem. Int. Ed. 2020; 59: 14 404
  • 117 Nagae H, Xia J, Kirillov E, Higashida K, Shoji K, Boiteau V, Zhang W, Carpentier J.-F, Mashima K. ACS Catal. 2020; 10: 5828
  • 118 Nazari SH, Forson KG, Martinez EE, Hansen NJ, Gassaway KJ, Lyons NM, Kenney KC, Valdivia-Berroeta GA, Smith SJ, Michaelis DJ. Org. Lett. 2019; 21: 9589
  • 119 Hashimoto T, Hatakeyama T, Nakamura M. J. Org. Chem. 2012; 77: 1168
  • 120 Bräse S, de Meijere A, Handbook of Organopalladium Chemistry for Organic Synthesis. Negishi E, de Meijere A. Wiley; New York 2002. 1. 1123
  • 121 Zhou J, Fu GC. J. Am. Chem. Soc. 2003; 125: 12 527
  • 122 Tan Z, Liang B, Huo S, Shi J.-c, Negishi E.-i. Tetrahedron: Asymmetry 2006; 17: 512
  • 123 Kondakov DY, Negishi E.-i. J. Am. Chem. Soc. 1995; 117: 10 771
  • 124 Eckert P, Sharif S, Organ MG. Angew. Chem. Int. Ed. 2021; 60: 12 224
  • 125 Yang Y, Oldenhuis NJ, Buchwald SL. Angew. Chem. Int. Ed. 2013; 52: 615
  • 126 Yang Y, Niedermann K, Han C, Buchwald SL. Org. Lett. 2014; 16: 4638
  • 127 Çalimsiz S, Organ MG. Chem. Commun. (Cambridge) 2011; 47: 5181
  • 128 Pompeo M, Froese RDJ, Hadei N, Organ MG. Angew. Chem. Int. Ed. 2012; 51: 11 354
  • 129 Krasovskiy A, Lipshutz BH. Org. Lett. 2011; 13: 3822
  • 130 Krasovskiy A, Lipshutz BH. Org. Lett. 2011; 13: 3818
  • 131 Krasovskiy A, Duplais C, Lipshutz BH. Org. Lett. 2010; 12: 4742
  • 132 Xu Z, Negishi E.-i. Org. Lett. 2008; 10: 4311
  • 133 Wang G, Mohan S, Negishi E.-i. Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 11 344
  • 134 Zhang F.-G, Marek I. J. Am. Chem. Soc. 2017; 139: 8364
  • 135 Zhang F.-G, Eppe G, Marek I. Angew. Chem. Int. Ed. 2016; 55: 714
  • 136 Yasui M, Ota R, Tsukano C, Takemoto Y. Org. Lett. 2018; 20: 7656
  • 137 Haas D, Hammann JM, Greiner R, Knochel P. ACS Catal. 2016; 6: 1540
  • 138 Son S, Fu GC. J. Am. Chem. Soc. 2008; 130: 2756
  • 139 Lou S, Fu GC. J. Am. Chem. Soc. 2010; 132: 5010
  • 140 Leitner A, Iron Catalysis in Organic Chemistry. Plietker B. Wiley-VCH; Weinheim, Germany 2008: 147–176
  • 141 Bolm C, Legros J, Le Paih J, Zani L. Chem. Rev. 2004; 104: 6217
  • 142 Hatakeyama T, Nakagawa N, Nakamura M. Org. Lett. 2009; 11: 4496
  • 143 Nakamura S, Yonehara M, Uchiyama M. Chem.–Eur. J. 2008; 14: 1068
  • 144 Tamao K, Sumitani K, Kumada M. J. Am. Chem. Soc. 1972; 94: 4374
  • 145 Corriu RJP, Masse JP. J. Chem. Soc., Chem. Commun. 1972; 144a
  • 146 Fortman GC, Nolan SP. Chem. Soc. Rev. 2011; 40: 5151
  • 147 Kambe N, Iwasaki T, Terao J. Chem. Soc. Rev. 2011; 40: 4937
  • 148 Metal-Catalyzed Cross-Coupling Reactions. Diederich F, Stang PJ. Wiley-VCH; Weinheim, Germany 1998
  • 149 Heravi MM, Zadsirjan V, Hajiabbasi P, Hamidi H. Monatsh. Chem. 2019; 150: 535
  • 150 Dongol KG, Koh H, Sau M, Chai CLL. Adv. Synth. Catal. 2007; 349: 1015
  • 151 Heravi MM, Hajiabbasi P. Monatsh. Chem. 2012; 143: 1575
  • 152 Yonova IM, Johnson AG, Osborne CA, Moore CE, Morrissette NS, Jarvo ER. Angew. Chem. Int. Ed. 2014; 53: 2422
  • 153 Yamamura M, Moritani I, Murahashi S.-I. J. Organomet. Chem. 1975; 91: C39
  • 154 Tsuji J. Palladium Reagents and Catalysts Innovations in Organic Synthesis. Wiley; Chichester, UK 1995
  • 155 Hayashi T, Konishi M, Kumada M. Tetrahedron Lett. 1979; 1871
  • 156 Krasovskiy AL, Haley S, Voigtritter K, Lipshutz BH. Org. Lett. 2014; 16: 4066
  • 157 Yang B, Wang Z.-X. J. Org. Chem. 2020; 85: 4772
  • 158 Sabarre A, Love J. Org. Lett. 2008; 10: 3941
  • 159 Cahiez G, Avedissian H. Synthesis 1998; 1199
  • 160 Fürstner A, Leitner A. Angew. Chem. Int. Ed. 2002; 41: 609
  • 161 Scheiper B, Bonnekessel M, Krause H, Fürstner A. J. Org. Chem. 2004; 69: 3943
  • 162 Guo W.-J, Wang Z.-X. Tetrahedron 2013; 69: 9580
  • 163 Cahiez G, Lefèvre G, Moyeux A, Guerret O, Gayon E, Guillonneau L, Lefèvre N, Gu Q, Zhou E. Org. Lett. 2019; 21: 2679
  • 164 Cahiez G, Gager O, Buendia J, Patinote C. Chem.–Eur. J. 2012; 18: 5860
  • 165 Zhou Y, Wang L, Yuan G, Liu S, Sun X, Yuan C, Yang Y, Bian Q, Wang M, Zhong J. Org. Lett. 2020; 22: 4532
  • 166 Grieco PA, Hon YS, Perez-Medrano A. J. Am. Chem. Soc. 1988; 110: 1630
  • 167 Fehr C, Chaptal-Gradoz N, Galindo J. Chem.–Eur. J. 2002; 8: 853
  • 168 Roelofs W, Gieselmann M, Cardé A, Tashiro H, Moreno DS, Henrick CA, Anderson RJ. J. Chem. Ecol. 1978; 4: 211
  • 169 Hutchinson JH, Money T. Can. J. Chem. 1985; 63: 3182
  • 170 Mao J, Liu F, Wang M, Wu L, Zheng B, Liu S, Zhong J, Bian Q, Walsh PJ. J. Am. Chem. Soc. 2014; 136: 17 662
  • 171 Hatanaka Y, Hiyama T. J. Org. Chem. 1988; 53: 918
  • 172 Sugiyama A, Ohnishi Y.-y, Nakaoka M, Nakao Y, Sato H, Sakaki S, Nakao Y, Hiyama T. J. Am. Chem. Soc. 2008; 130: 12 975
  • 173 Foubelo F, Nájera C, Yus M. Chem. Rec. 2016; 16: 2521
  • 174 Ichii S, Hamasaka G, Uozumi Y. Chem.–Asian J. 2019; 14: 3850
  • 175 Hirabayashi K, Mori A, Kawashima J, Suguro M, Nishihara Y, Hiyama T. J. Org. Chem. 2000; 65: 5342
  • 176 Denmark SE, Sweis RF. J. Am. Chem. Soc. 2001; 123: 6439
  • 177 Gordillo A, Ortuño MA, López-Mardomingo C, Lledós A, Ujaque G, de Jesús E. J. Am. Chem. Soc. 2013; 135: 13 749
  • 178 Hiyama T, Minami Y, Mori A, Organosilicon Chemistry. Hiyama T, Oestreich M. Wiley-VCH; Weinheim, Germany 2019: 271–332
  • 179 Boulton L, Synthetic Methods in Drug Discovery. Blakemore DC, Doyle PM, Fobian YM. Royal Society of Chemistry; Cambridge 2016. 1. 104–121
  • 180 Komiyama T, Minami Y, Hiyama T. ACS Catal. 2017; 7: 631
  • 181 Mowery ME, DeShong P. J. Org. Chem. 1999; 64: 1684
  • 182 Correia R, DeShong P. J. Org. Chem. 2001; 66: 7159
  • 183 Kabalka GW, Dong G, Venkataiah B, Chen C. J. Org. Chem. 2005; 70: 9207
  • 184 Castaño AM, Echavarren AM. Tetrahedron Lett. 1996; 37: 6587
  • 185 Crawforth CM, Burling S, Fairlamb IJS, Taylor RJK, Whitwood AC. Chem. Commun. (Cambridge) 2003; 2194
  • 186 Kabalka GW, Venkataiah B, Dong G. Org. Lett. 2003; 5: 3803
  • 187 Kayaki Y, Koda T, Ikariya T. Eur. J. Org. Chem. 2004; 4989
  • 188 Nájera C, Gil-Moltó J, Karlström S. Adv. Synth. Catal. 2004; 346: 1798
  • 189 Dey R, Chattopadhyay K, Ranu BC. J. Org. Chem. 2008; 73: 9461
  • 190 Saijo H, Sakaguchi H, Ohashi M, Ogoshi S. Organometallics 2014; 33: 3669
  • 191 Strotman NA, Sommer S, Fu GC. Angew. Chem. Int. Ed. 2007; 46: 3556
  • 192 Powell DA, Fu GC. J. Am. Chem. Soc. 2004; 126: 7788
  • 193 Wu Y, Zhang H.-R, Cao Y.-X, Lan Q, Wang X.-S. Org. Lett. 2016; 18: 5564
  • 194 Jouffroy M, Primer DN, Molander GA. J. Am. Chem. Soc. 2016; 138: 475
  • 195 Patel NR, Kelly CB, Jouffroy M, Molander GA. Org. Lett. 2016; 18: 764 Org. Lett. 2016; 18: 764
  • 196 Stille JK. Angew. Chem. Int. Ed. 1986; 25: 508
  • 197 Lee V. Org. Biomol. Chem. 2019; 17: 9095
  • 198 Heravi MM, Mohammadkhani L. J. Organomet. Chem. 2018; 869: 106
  • 199 Stanetty P, Schnürch M, Mihovilovic MD. J. Org. Chem. 2006; 71: 3754
  • 200 Cordovilla C, Bartolomé C, Martínez-Ilarduya JM, Espinet P. ACS Catal. 2015; 5: 3040
  • 201 Albéniz AC, Carrera N. Eur. J. Inorg. Chem. 2011; 2347
  • 202 Maleczka Jr RE, Gallagher WP, Terstiege I. J. Am. Chem. Soc. 2000; 122: 384
  • 203 Gallagher WP, Terstiege I, Maleczka Jr RE. J. Am. Chem. Soc. 2001; 123: 3194
  • 204 Jurkschat K, Tzschach A. J. Organomet. Chem. 1984; 272: C13
  • 205 Jurkschat K, Tszchach A, Meunier-Piret J. J. Organomet. Chem. 1986; 315: 45
  • 206 Vedejs E, Haight AR, Moss WO. J. Am. Chem. Soc. 1992; 114: 6556
  • 207 Li L, Wang C.-Y, Huang R, Biscoe MR. Nat. Chem. 2013; 5: 607
  • 208 Herve A, Rodriguez AL, Fouquet E. J. Org. Chem. 2005; 70: 1953
  • 209 Srivastav N, Singh R, Kaur V. RSC Adv. 2015; 5: 62 202
  • 210 Roy D, Uozumi Y. Adv. Synth. Catal. 2018; 360: 602
  • 211 Casado AL, Espinet P. J. Am. Chem. Soc. 1998; 120: 8978
  • 212 Casado AL, Espinet P, Gallego AM. J. Am. Chem. Soc. 2000; 122: 11 771
  • 213 Espinet P, Echavarren AM. Angew. Chem. Int. Ed. 2004; 43: 4704
  • 214 Casado AL, Espinet P, Gallego AM, Martínez-Ilarduya JM. Chem. Commun. (Cambridge) 2001; 339
  • 215 Nova A, Ujaque G, Maseras F, Lledós A, Espinet P. J. Am. Chem. Soc. 2006; 128: 14 571
  • 216 Dowlut M, Mallik D, Organ MG. Chem.–Eur. J. 2010; 16: 4279
  • 217 Valente C, Çalimsiz S, Hoi KH, Mallik D, Sayah M, Organ MG. Angew. Chem. Int. Ed. 2012; 51: 3314
  • 218 Pérez-Temprano MH, Casares JA, Espinet P. Chem.–Eur. J. 2012; 18: 1864
  • 219 delPozo J, Carrasco D, Pérez-Temprano MH, García-Melchor M, Álvarez R, Casares JA, Espinet P. Angew. Chem. Int. Ed. 2013; 52: 2189
  • 220 Shi Y, Peterson SM, Haberaecker WW, Blum SA. J. Am. Chem. Soc. 2008; 130: 2168
  • 221 Duschek A, Kirsch SF. Angew. Chem. Int. Ed. 2008; 47: 5703
  • 222 Chen Y, Chen M, Liu Y. Angew. Chem. Int. Ed. 2012; 51: 6181
  • 223 Casado AL, Espinet P. Organometallics 2003; 22: 1305
  • 224 Zhou H, Jin H, Ye S, He X, Wu J. Tetrahedron Lett. 2009; 50: 4616
  • 225 Ho CC, Ariafard A, Hyland CJT, Bissember AC. Organometallics 2019; 38: 2683
  • 226 Falck JR, Patel PK, Bandyopadhyay A. J. Am. Chem. Soc. 2007; 129: 790 J. Am. Chem. Soc. 2008; 130: 2372
  • 227 Lange H, Fröhlich R, Hoppe D. Tetrahedron 2008; 64: 9123
  • 228 Falck JR, Barma D, Mohapatra S, Bandyopadhyay A, Reddy KM, Qi J, Campbell W. Bioorg. Med. Chem. Lett. 2004; 14: 4987
  • 229 Falck JR, Bhatt RK, Ye J. J. Am. Chem. Soc. 1995; 117: 5973
  • 230 Mohapatra S, Bandyopadhyay A, Barma DK, Capdevila JH, Falck JR. Org. Lett. 2003; 5: 4759
  • 231 Wang M, Lin Z. Organometallics 2010; 29: 3077
  • 232 Peng Y, Li W.-DZ. Eur. J. Org. Chem. 2010; 6703
  • 233 Lu G, Voigtritter KR, Cai C, Lipshutz BH. Chem. Commun. (Cambridge) 2012; 48: 8661
  • 234 Theddu N, Vedejs E. J. Org. Chem. 2013; 78: 5061