Liu, G. : 2023 Science of Synthesis, 2023/1: Knowledge Updates 2023/1 DOI: 10.1055/sos-SD-147-00069
Knowledge Updates 2023/1

47.1.2.3.3 Asymmetric π-Allyl Substitution Reactions

Weitere Informationen

Buch

Herausgeber: Liu, G.

Autoren: Chen, P. ; Cheng, Z.; Gong, L.-Z. ; Ho, C.-Y.; Jiang, R. ; Jie, X. ; Lei, A. ; Lin, Z.; Liu, B.; Liu, G. ; Liu, Q. ; Liu, X.; Lu, Z. ; Raja, D.; Sayed, M. ; Su, W. ; Tang, S. ; Tao, R.; Wang, J. ; Wang, K. ; Wang, P.-S. ; Yang, P.; You, S.-L. ; Zhao, Y.; Zheng, Y.

Titel: Knowledge Updates 2023/1

Print ISBN: 9783132455061; Online ISBN: 9783132455085; Buch-DOI: 10.1055/b000000844

Fachgebiete: Organische Chemie;Chemische Reaktionen, Katalyse;Organometallchemie;Chemische Labormethoden, Stöchiometrie

Science of Synthesis Knowledge Updates



Übergeordnete Publikation

Titel: Science of Synthesis

DOI: 10.1055/b-00000101

Reihenherausgeber: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Typ: Mehrbändiges Werk

 


Abstract

Asymmetric allylic substitution reactions catalyzed by transition-metal complexes, namely, the Tsuji–Trost-type reaction, can be used for constructing stereochemically defined carbon–carbon and carbon–heteroatom bonds. In this review, asymmetric allylic substitution reactions catalyzed by different transition-metal complexes, including those based on palladium, iridium, rhodium, and earth-abundant metals, are discussed. These reactions are categorized by the type of nucleophiles or transition-metal catalysts employed.

 
  • 1 Transition Metal Catalyzed Enantioselective Allylic Substitution in Organic Synthesis. Kazmaier U. Springer; Heidelberg 2012
  • 2 Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
  • 3 Lu Z, Ma S. Angew. Chem. Int. Ed. 2008; 47: 258
  • 4 Cheng Q, Tu H.-F, Zheng C, Qu J.-P, Helmchen G, You S.-L. Chem. Rev. 2019; 119: 1855
  • 5 Sartori G, Maggi R. Science of Synthesis 2010; 47: 517
  • 6 Huang H.-M, Bellotti P, Glorius F. Chem. Soc. Rev. 2020; 49: 6186
  • 7 Weaver JD, Recio III A, Grenning AJ, Tunge JA. Chem. Rev. 2011; 111: 1846
  • 8 James J, Jackson M, Guiry PJ. Adv. Synth. Catal. 2019; 361: 3016
  • 9 Pàmies O, Margalef J, Cañellas S, James J, Judge E, Guiry PJ, Moberg C, Bäckvall J.-E, Pfaltz A, Pericàs MA, Diéguez M. Chem. Rev. 2021; 121: 4373
  • 10 Ohmatsu K, Ito M, Kunieda T, Ooi T. Nat. Chem. 2012; 4: 473
  • 11 Afewerki S, Córdova A. Chem. Rev. 2016; 116: 13 512
  • 12 Meazza M, Rios R. Synthesis 2016; 48: 960
  • 13 Zhang H.-H, Yu S. Acta. Chim. Sinica. 2019; 77: 832
  • 14 Zhuo C.-X, Zheng C, You S.-L. Acc. Chem. Res. 2014; 47: 2558
  • 15 Ohmatsu K, Ito M, Kunieda T, Ooi T. J. Am. Chem. Soc. 2013; 135: 590
  • 16 Phipps RJ, Hamilton GL, Toste FD. Nat. Chem. 2012; 4: 603
  • 17 Zheng C, You S.-L. ACS Cent. Sci. 2021; 7: 432
  • 18 Behenna DC, Liu Y, Yurino T, Kim J, White DE, Virgil SC, Stoltz BM. Nat. Chem. 2012; 4: 130
  • 19 Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10 035
  • 20 Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DWC. Nat. Rev. Chem. 2017; 1: 52
  • 21 Lang SB, O’Nele KM, Tunge JA. J. Am. Chem. Soc. 2014; 136: 13 606
  • 22 Zhang H.-H, Zhao J.-J, Yu S. J. Am. Chem. Soc. 2018; 140: 16 914
  • 23 Zheng C, You S.-L. Nat. Prod. Rep. 2019; 36: 1589
  • 24 Tu H.-F, Zhang X, Zheng C, Zhu M, You S.-L. Nat. Catal. 2018; 1: 601
  • 25 Takeuchi R, Kashio M. Angew. Chem. Int. Ed. 1997; 36: 263
  • 26 de Vries AHM, Meetsma A, Feringa BL. Angew. Chem. Int. Ed. 1996; 35: 2374
  • 27 Ohmura T, Hartwig JF. J. Am. Chem. Soc. 2002; 124: 15 164
  • 28 Alexakis A, Polet D. Org. Lett. 2004; 6: 3529
  • 29 Madrahimov ST, Markovic D, Hartwig JF. J. Am. Chem. Soc. 2009; 131: 7228
  • 30 Spiess S, Raskatov JA, Gnamm C, Brödner K, Helmchen G. Chem.–Eur. J. 2009; 15: 11 087
  • 31 Wu Q.-F, He H, Liu W.-B, You S.-L. J. Am. Chem. Soc. 2010; 132: 11 418
  • 32 Liu W.-B, Zheng C, Zhuo C.-X, Dai L.-X, You S.-L. J. Am. Chem. Soc. 2012; 134: 4812
  • 33 Defieber C, Ariger MA, Moriel P, Carreira EM. Angew. Chem. Int. Ed. 2007; 46: 3139
  • 34 Rössler SL, Krautwald S, Carreira EM. J. Am. Chem. Soc. 2017; 139: 3603
  • 35 Ketcham JM, Shin I, Montgomery TP, Krische MJ. Angew. Chem., Int. Ed. 2014; 53: 9142
  • 36 Kim SW, Zhang W, Krische MJ. Acc. Chem. Res. 2017; 50: 2371
  • 37 Lafrance M, Roggen M, Carreira EM. Angew. Chem. Int. Ed. 2012; 51: 3470
  • 38 Roggen M, Carreira EM. Angew. Chem., Int. Ed. 2011; 50: 5568
  • 39 Roggen M, Carreira EM. Angew. Chem., Int. Ed. 2012; 51: 8652 Angew. Chem., Int. Ed. 2014; 53: 348.
  • 40 Hamilton JY, Rössler SL, Carreira EM. J. Am. Chem. Soc. 2017; 139: 8082
  • 41 Tu H.-F, Yang P, Lin Z.-H, Zheng C, You S.-L. Nat. Chem. 2020; 12: 838
  • 42 Alexakis A, El Hajjaji S, Polet D, Rathgeb X. Org. Lett. 2007; 9: 3393
  • 43 Hamilton JY, Sarlah D, Carreira EM. J. Am. Chem. Soc. 2013; 135: 994
  • 44 Hamilton JY, Sarlah D, Carreira EM. Angew. Chem. Int. Ed. 2013; 52: 7532
  • 45 Krautwald S, Sarlah D, Schafroth MA, Carreira EM. Science (Washington, D. C.) 2013; 340: 1065
  • 46 Chen W, Hartwig JF. J. Am. Chem. Soc. 2013; 135: 2068
  • 47 Chen W, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 377
  • 48 Graening T, Hartwig JF. J. Am. Chem. Soc. 2005; 127: 17 192
  • 49 Jiang X, Hartwig JF. Angew.Chem. Int. Ed. 2017; 56: 8887
  • 50 Chen M, Hartwig JF. Angew. Chem. Int. Ed. 2014; 53: 12 172
  • 51 Chen M, Hartwig JF. J. Am. Chem. Soc. 2015; 137: 13 972
  • 52 Chen M, Hartwig JF. Angew. Chem. Int. Ed. 2014; 53: 8691
  • 53 Huo X, He R, Zhang X, Zhang W. J. Am. Chem. Soc. 2016; 138: 11 093
  • 54 Huo X, Zhang J, Fu J, He R, Zhang W. J. Am. Chem. Soc. 2018; 140: 2080
  • 55 Wei L, Zhu Q, Xu S.-M, Chang X, Wang C.-J. J. Am. Chem. Soc. 2018; 140: 1508
  • 56 Liu W.-B, Reeves CM, Virgil SC, Stoltz BM. J. Am. Chem. Soc. 2013; 135: 10 626
  • 57 Liu W.-B, Reeves CM, Stoltz BM. J. Am. Chem. Soc. 2013; 135: 17 298
  • 58 Cheng Q, Wang Y, You S.-L. Angew. Chem. Int. Ed. 2016; 55: 3496
  • 59 Koschker P, Breit B. Acc. Chem. Res. 2016; 49: 1524
  • 60 Thoke MB, Kang Q. Synthesis 2019; 51: 2585
  • 61 Arnold JS, Nguyen HM. J. Am. Chem. Soc. 2012; 134: 8380
  • 62 Wright TB, Evans PA. J. Am. Chem. Soc. 2016; 138: 15 303
  • 63 Tang S.-B, Zhang X, Tu H.-F, You S.-L. J. Am. Chem. Soc. 2018; 140: 7737
  • 64 Süsse L, Stoltz BM. Chem. Rev. 2021; 121: 4084
  • 65 Hornillos V, Gualtierotti J.-B, Feringa BL. Top. Organomet. Chem. 2016; 58: 1
  • 66 Ohmiya H, Yokobori U, Makida Y, Sawamura M. J. Am. Chem. Soc. 2010; 132: 2895
  • 67 Nagao K, Yokobori U, Makida Y, Ohmiya H, Sawamura M. J. Am. Chem. Soc. 2012; 134: 8982
  • 68 Shido Y, Yoshida M, Tanabe M, Ohmiya H, Sawamura M. J. Am. Chem. Soc. 2012; 134: 18 573
  • 69 Zhang H, Gu Q, You S. Chin. J. Org. Chem. 2019; 39: 15
  • 70 Kita Y, Kavthe RD, Oda H, Mashima K. Angew. Chem. Int. Ed. 2016; 55: 1098
  • 71 Ngamnithiporn A, Jette CI, Bachman S, Virgil SC, Stoltz BM. Chem. Sci. 2018; 9: 2547
  • 72 Nagae H, Xia J, Kirillov E, Higashida K, Shoji K, Boiteau V, Zhang W, Carpentier J.-F, Mashima K. ACS Catal. 2020; 10: 5828
  • 73 Ghorai S, Ur Rehman S, Xu W.-B, Huang W.-Y, Li C. Org. Lett. 2020; 22: 3519
  • 74 Sun M, Chen J.-F, Chen S, Li C. Org. Lett. 2019; 21: 1278
  • 75 Ghorai S, Chirke SS, Xu W.-B, Chen J.-F, Li C. J. Am. Chem. Soc. 2019; 141: 11 430