Liu, G. : 2023 Science of Synthesis, 2023/1: Knowledge Updates 2023/1 DOI: 10.1055/sos-SD-147-00202
Knowledge Updates 2023/1

47.1.5.6 Synthesis of Functionalized Alkenes by Metal-Catalyzed Coupling of Carbonyls with Alkynes/Allenes

More Information

Book

Editor: Liu, G.

Authors: Chen, P. ; Cheng, Z.; Gong, L.-Z. ; Ho, C.-Y.; Jiang, R. ; Jie, X. ; Lei, A. ; Lin, Z.; Liu, B.; Liu, G. ; Liu, Q. ; Liu, X.; Lu, Z. ; Raja, D.; Sayed, M. ; Su, W. ; Tang, S. ; Tao, R.; Wang, J. ; Wang, K. ; Wang, P.-S. ; Yang, P.; You, S.-L. ; Zhao, Y.; Zheng, Y.

Title: Knowledge Updates 2023/1

Print ISBN: 9783132455061; Online ISBN: 9783132455085; Book DOI: 10.1055/b000000844

Subjects: Organic Chemistry;Chemical Reactions, Catalysis;Organometallic Chemistry;Laboratory Techniques, Stoichiometry

Science of Synthesis Knowledge Updates



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Series Editors: Fürstner, A. (Editor-in-Chief); Carreira, E. M.; Faul, M.; Kobayashi, S.; Koch, G.; Molander, G. A.; Nevado, C.; Trost, B. M.; You, S.-L.

Type: Multivolume Edition

 


Abstract

In this review, different coupling methodologies between carbonyls and alkynes or allenes affording highly functionalized alkenes are summarized. Two main strategies are discussed in detail: In the first one, electrophilic carbonyl species are utilized in metal-catalyzed reductive coupling reactions assisted by various reductants such as boranes, silanes, and hydrogen gas. In the second one, nucleophilic carbonyl species are employed in coupling reactions with electrophilic π-allyl intermediates generated in situ, resulting in a formal α-allylation of carbonyls. Various representative examples serve to demonstrate the high versatility of these two general strategies, including applications in the total synthesis of complex natural products. High regio- and stereocontrol can be achieved with excellent yields for most of the selected examples. Reports of decarboxylative coupling and metal-free coupling are also included.

 
  • 1 Huang W.-S, Chan J, Jamison TF. Org. Lett. 2000; 2: 4221
  • 2 Miller KM, Huang W.-S, Jamison TF. J. Am. Chem. Soc. 2003; 125: 3442
  • 3 Miller KM, Luanphaisarnnont T, Molinaro C, Jamison TF. J. Am. Chem. Soc. 2004; 126: 4130
  • 4 Moslin RM, Jamison TF. J. Org. Chem. 2007; 72: 9736
  • 5 Mahandru GM, Liu G, Montgomery J. J. Am. Chem. Soc. 2004; 126: 3698
  • 6 Chaulagain MR, Sormunen GJ, Montgomery J. J. Am. Chem. Soc. 2007; 129: 9568
  • 7 Herath A, Montgomery J. J. Am. Chem. Soc. 2008; 130: 8132
  • 8 Li W, Chen N, Montgomery J. Angew. Chem. Int. Ed. 2010; 49: 8712
  • 9 Shimkin KW, Montgomery J. J. Am. Chem. Soc. 2018; 140: 7074
  • 10 Huddleston RR, Jang H.-Y, Krische MJ. J. Am. Chem. Soc. 2003; 125: 11 488
  • 11 Cho C.-W, Krische MJ. Org. Lett. 2006; 8: 3873
  • 12 Jang H.-Y, Huddleston RR, Krische MJ. J. Am. Chem. Soc. 2004; 126: 4664
  • 13 Komanduri V, Krische MJ. J. Am. Chem. Soc. 2006; 128: 16 448
  • 14 Kong J.-R, Ngai M.-Y, Krische MJ. J. Am. Chem. Soc. 2006; 128: 718
  • 15 Zheng Y.-L, Ye M. Chin. J. Chem. 2020; 38: 489
  • 16 Skucas E, Bower JF, Krische MJ. J. Am. Chem. Soc. 2007; 129: 12 678
  • 17 Bower JF, Skucas E, Patman RL, Krische MJ. J. Am. Chem. Soc. 2007; 129: 15 134
  • 18 Skucas E, Zbieg JR, Krische MJ. J. Am. Chem. Soc. 2009; 131: 5054
  • 19 Sam B, Montgomery TP, Krische MJ. Org. Lett. 2013; 15: 3790
  • 20 Han SB, Kim IS, Han H, Krische MJ. J. Am. Chem. Soc. 2009; 131: 6916
  • 21 Lumbroso A, Vautravers NR, Breit B. Org. Lett. 2010; 12: 5498
  • 22 Lumbroso A, Koschker P, Vautravers NR, Breit B. J. Am. Chem. Soc. 2011; 133: 2386
  • 23 Koschker P, Lumbroso A, Breit B. J. Am. Chem. Soc. 2011; 133: 20 746
  • 24 Li C, Kähny M, Breit B. Angew. Chem. Int. Ed. 2014; 53: 13 780
  • 25 Zhou Y, Breit B. Chem.–Eur. J. 2017; 23: 18 156
  • 26 Parveen S, Li C, Hassan A, Breit B. Org. Lett. 2017; 19: 2326
  • 27 Spreider PA, Haydl AM, Heinrich M, Breit B. Angew. Chem. Int. Ed. 2016; 55: 15 569
  • 28 Li C, Breit B. J. Am. Chem. Soc. 2014; 136: 862
  • 29 Li C, Grugel CP, Breit B. Chem. Commun. (Cambridge) 2016; 52: 5840
  • 30 Beck TM, Breit B. Eur. J. Org. Chem. 2016; 5839
  • 31 Beck TM, Breit B. Org. Lett. 2016; 18: 124
  • 32 Beck TM, Breit B. Angew. Chem. Int. Ed. 2017; 56: 1903
  • 33 Hilpert LJ, Breit B. Angew. Chem. Int. Ed. 2019; 58: 9939
  • 34 Grugel CP, Breit B. Org. Lett. 2018; 20: 1066
  • 35 Yang X, Toste FD. Chem. Sci. 2016; 7: 2653
  • 36 Yang C, Zhang K, Wu Z, Yao H, Lin A. Org. Lett. 2016; 18: 5332
  • 37 Lee JTD, Zhao Y. Chem.–Eur. J. 2018; 24: 9520
  • 38 Chen Q.-A, Cruz FA, Dong VM. J. Am. Chem. Soc. 2015; 137: 3157
  • 39 Cruz FA, Chen Z, Kurtoic SI, Dong VM. Chem. Commun. (Cambridge) 2016; 52: 5836