van Leeuwen, P. W. N. M.: 2014 Science of Synthesis, 2013/8: C-1 Building Blocks in Organic Synthesis 2 DOI: 10.1055/sos-SD-213-00080
C-1 Building Blocks in Organic Synthesis 2

2.3.1 Carbene Insertion into C—H Bonds with C-1

More Information

Book

Editor: van Leeuwen, P. W. N. M.

Authors: Ballini, R.; Belderrain, T. R.; Bruneau, C.; Cokoja, M.; Dong, D.; Fischmeister, C.; Grushin, V. V.; Hu, J.; Ibrahim, H.; Iwasawa, N.; Kaposi, M.; Kühn, F. E.; Lishchynskyi, A.; Merino, P.; Molander, G. A.; Müller, C.; MuÇoz-Molina, J. M.; Neumann, H.; Ni, C.; Nicasio, M. C.; Novák, P.; Nozaki, K.; Ouali, A.; Petrini, M.; Rutjes, F. P. J. T.; Ryu, D.; Schoonen, L.; Schranck, J.; Taillefer, M.; Takahashi, K.; Takaya, J.; te Grotenhuis, C.; Witt, J.; Zhang, N.

Title: C-1 Building Blocks in Organic Synthesis 2

Subtitle: Alkenations, Cross Couplings, Insertions, Substitutions, and Halomethylations

Print ISBN: 9783131751218; Online ISBN: 9783132064515; Book DOI: 10.1055/b-003-125817

Subjects: C-1 Building Blocks in Organic Synthesis

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Type: Multivolume Edition

 


Abstract

Treatment of a diazo compound, i.e. a (diazomethyl)phosphonate or diazo(trimethylsilyl)methane, with a base, and subsequent alkenation of a carbonyl compound (Wittig–Horner reaction or Peterson elimination), followed by decomposition of the resulting diazoalkene affords an alkylidene carbene. This species may undergo intramolecular C—H insertion to generate five-membered carbocyclic or heterocyclic systems. In this chapter, some applications of this methodology in organic synthesis are reviewed.

 
  • 1 Stang PJ. Chem. Rev. 1978; 78: 383
  • 2 Kirmse W. Angew. Chem. Int. Ed. Engl. 1997; 36: 1164
  • 3 Knorr R. Chem. Rev. 2004; 104: 3795
  • 4 Gilbert JC, Weerasooriya U, Giamalva D. Tetrahedron Lett. 1979; 4619
  • 5 Gilbert JC, Giamalva DH, Weerasooriya U. J. Org. Chem. 1983; 48: 5251
  • 6 Gilbert JC, Giamalva DH, Baze ME. J. Org. Chem. 1985; 50: 2557
  • 7 Gilbert JC, Blackburn BK. J. Org. Chem. 1986; 51: 4087
  • 8 Gilbert JC, Blackburn BK. J. Org. Chem. 1986; 51: 3656
  • 9 Gilbert JC, Giamalva DH. J. Org. Chem. 1985; 50: 2586
  • 10 Gilbert JC, Weerasooriya U. J. Org. Chem. 1983; 48: 448
  • 11 Ohira S, Okai K, Moritani T. J. Chem. Soc., Chem. Commun. 1992; 721
  • 12 Ohira S, Sawamoto T, Yamato M. Tetrahedron Lett. 1995; 36: 1537
  • 13 Taber DF, Meagley RP. Tetrahedron Lett. 1994; 35: 7909
  • 14 Taber DF, Walter R, Meagley RP. J. Org. Chem. 1994; 59: 6014
  • 15 Boutagy J, Thomas R. Chem. Rev. 1974; 74: 87
  • 16 Ager DJ. Org. React. (N. Y.) 1990; 38: 1
  • 17 Murphy NG, Varney SM, Tallon JM, Thompson JR, Blanc PD. Clin. Toxicol. 2009; 47: 712
  • 18 Taber DF, Meagley RP, Doren DJ. J. Org. Chem. 1996; 61: 5723
  • 19 Taber DF, Christos TE, Hodge CN. J. Org. Chem. 1996; 61: 2081
  • 20 Wardrop DJ, Zhang W, Fritz J. Org. Lett. 2002; 4: 489
  • 21 Hauske JR, Guadliana M, Desai K. J. Org. Chem. 1982; 47: 5019
  • 22 Pérez-Pérez M.-J, Camarasa M.-J. Tetrahedron 1994; 50: 7269
  • 23 Jacobs MF, Kitching W. Curr. Org. Chem. 1998; 2: 395
  • 24 Wardrop DJ, Bowen EG. Chem. Commun. (Cambridge) 2005; 5106
  • 25 Walker LF, Connolly S, Wills M. Tetrahedron Lett. 1998; 39: 5273
  • 26 Walker LF, Bourghida A, Connolly S, Wills M. J. Chem. Soc., Perkin Trans. 1 2002; 965
  • 27 Spero DM, Adams J. Tetrahedron Lett. 1992; 33: 1143
  • 28 Yun SY, Zheng J.-C, Lee D. J. Am. Chem. Soc. 2009; 131: 8413
  • 29 Zheng J.-C, Yun SY, Sun C, Lee N.-K, Lee D. J. Org. Chem. 2011; 76: 1086
  • 30 Jiménez MD, Ortega R, Tito A, Fariña F. Heterocycles 1988; 27: 173