van Leeuwen, P. W. N. M.: 2014 Science of Synthesis, 2013/8: C-1 Building Blocks in Organic Synthesis 2 DOI: 10.1055/sos-SD-213-00165
C-1 Building Blocks in Organic Synthesis 2

2.5.5 Reaction of Formaldehyde with Organometallic Reagents

More Information

Book

Editor: van Leeuwen, P. W. N. M.

Authors: Ballini, R.; Belderrain, T. R.; Bruneau, C.; Cokoja, M.; Dong, D.; Fischmeister, C.; Grushin, V. V.; Hu, J.; Ibrahim, H.; Iwasawa, N.; Kaposi, M.; Kühn, F. E.; Lishchynskyi, A.; Merino, P.; Molander, G. A.; Müller, C.; MuÇoz-Molina, J. M.; Neumann, H.; Ni, C.; Nicasio, M. C.; Novák, P.; Nozaki, K.; Ouali, A.; Petrini, M.; Rutjes, F. P. J. T.; Ryu, D.; Schoonen, L.; Schranck, J.; Taillefer, M.; Takahashi, K.; Takaya, J.; te Grotenhuis, C.; Witt, J.; Zhang, N.

Title: C-1 Building Blocks in Organic Synthesis 2

Subtitle: Alkenations, Cross Couplings, Insertions, Substitutions, and Halomethylations

Print ISBN: 9783131751218; Online ISBN: 9783132064515; Book DOI: 10.1055/b-003-125817

Subjects: C-1 Building Blocks in Organic Synthesis

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Type: Multivolume Edition

 


Abstract

Formaldehyde is one of the most important single-carbon electrophiles; it is inexpensive and can be used in many organic reactions and thus in natural product synthesis. However, there are scant examples of the application of formaldehyde with organometallic reagents in synthesis. This may be due to the properties of formaldehyde. Monomeric formaldehyde tends to polymerize rapidly to give poorly reactive species such as paraformaldehyde and the trimer trioxane. Paraformaldehyde and trioxane are depolymerized thermally; however, thermal cracking produces highly toxic, gaseous formaldehyde that rapidly repolymerizes. Alternatively, paraformaldehyde and trioxane can be depolymerized with Lewis acids, but this introduces new factors, such as corrosion, toxic waste disposal, and difficult handling. Formaldehyde is also available as an aqueous solution, known as formalin, but this approach is often unsuitable due to the instability of the organometallic compounds in the presence of water. This section discusses all that can be achieved despite these factors.

 
  • 1 Stork G, DʼAngelo J. J. Am. Chem. Soc. 1974; 96: 7114
  • 2 Hajos ZG, Parrish DR. J. Org. Chem. 1973; 38: 3244
  • 3 Lucast DH, Wemple J. Synthesis 1976; 724
  • 4 Ozasa N, Wadamoto M, Ishihara K, Yamamoto H. Synlett 2003; 2219
  • 5 Loh T.-P, Chua G.-L, Vittal J, Wong M.-W. Chem. Commun. (Cambridge) 1998; 861
  • 6 Manabe K, Ishikawa S, Hamada T, Kobayashi S. Tetrahedron 2003; 59: 10439
  • 7 Ishikawa S, Hamada T, Manabe K, Kobayashi S. J. Am. Chem. Soc. 2004; 126: 12236
  • 8 Kokubo M, Ogawa C, Kobayashi S. Angew. Chem. Int. Ed. 2008; 47: 6909
  • 9 Fleming I, Kilburn JD. J. Chem. Soc., Perkin Trans. 1 1992; 3295
  • 10 Ishihara K, Hananki N, Yamamoto H. Synlett 1993; 577
  • 11 Kuwano R, Miyazaki H, Ito Y. Chem. Commun. (Cambridge) 1998; 71
  • 12 Mouri S, Chen Z, Matsunaga S, Shibasaki M. Chem. Commun. (Cambridge) 2009; 5138
  • 13 Fukuchi I, Hamashima Y, Sodeoka M. Adv. Synth. Catal. 2007; 349: 509
  • 14 Paradowska J, Pasternak M, Gut B, Gryzło B, Mlynarski J. J. Org. Chem. 2011; 77: 173
  • 15 Benkeser RA, DeTalvo W, Darling D. J. Org. Chem. 1979; 44: 225
  • 16 Benkeser RA, Snyder DC. J. Org. Chem. 1982; 47: 1243
  • 17 Johnson JR. J. Am. Chem. Soc. 1933; 55: 3029
  • 18 Bernardon C, Deberly A. J. Chem. Soc., Perkin Trans. 1 1980; 2631
  • 19 Bunce RA, Shellhammer AJ. Org. Prep. Proced. Int. 1987; 19: 161
  • 20 Rodriguez L, Lu N, Yang NL. Synlett 1990; 227
  • 21 Deguest G, Bischoff L, Fruit C, Marsais F. Org. Lett. 2007; 9: 1165
  • 22 Schlosser M, Gorecka J, Castagnetti E. Eur. J. Org. Chem. 2003; 452
  • 23 Kuehm-Caubère C, Adach-Becker S, Fort Y, Caubère P. Tetrahedron 1996; 52: 9087
  • 24 Adams DR, Bhatnagar SP. Synthesis 1977; 661
  • 25 Bach T, Löbel J. Synthesis 2002; 2521
  • 26 Steuber E, Elter G, Noltemeyer M, Schmidt H.-G, Meller A. Organometallics 2000; 19: 5083
  • 27 Alder K, Pascher F, Schmitz A. Ber. Dtsch. Chem. Ges. B 1943; 76: 27
  • 28 Hoffmann HMR. Angew. Chem. Int. Ed. Engl. 1969; 8: 556
  • 29 Yang Q, Tong X, Zhang W. THEOCHEM 2010; 957: 84
  • 30 Snider BB. Acc. Chem. Res. 1980; 13: 426
  • 31 Rodini DJ, Snider BB. Tetrahedron Lett. 1980; 21: 3857
  • 32 Snider BB, Rodini DJ, Kirk TC, Cordova R. J. Am. Chem. Soc. 1982; 104: 555
  • 33 Snider BB, Ron E. J. Am. Chem. Soc. 1985; 107: 8160
  • 34 Maruoka K, Concepcion AB, Hirayama N, Yamamoto H. J. Am. Chem. Soc. 1990; 112: 7422
  • 35 Maruoka K, Concepcion AB, Murase N, Oishi M, Hirayama N, Yamamoto H. J. Am. Chem. Soc. 1993; 115: 3943
  • 36 Okachi T, Onaka M. J. Am. Chem. Soc. 2004; 126: 2306
  • 37 Sangthong W, Probst M, Limtrakul J. J. Mol. Struct. 2005; 748: 119
  • 38 Wannakao S, Khongpracha P, Limtrakul J. J. Phys. Chem. A 2011; 115: 12486
  • 39 Choomwattana S, Maihom T, Khongpracha P, Probst M, Limtrakul J. J. Phys. Chem. C 2008; 112: 10855
  • 40 Maihom T, Choomwattana S, Khongpracha P, Probst M, Limtrakul J. ChemPhysChem 2012; 13: 245
  • 41 Okano T, Makino M, Konishi H, Kiji J. Chem. Lett. 1985; 1793
  • 42 Markó L. Transition Met. Chem. 1992; 17: 474
  • 43 Spencer A. J. Organomet. Chem. 1980; 194: 113
  • 44 Murata K, Matsuda A, Masuda T. Bull. Chem. Soc. Jpn. 1988; 61: 325
  • 45 Bausch CC, Patman RL, Breit B, Krische MJ. Angew. Chem. Int. Ed. 2011; 50: 5687
  • 46 Smejkal T, Han H, Breit B, Krische MJ. J. Am. Chem. Soc. 2009; 131: 10366
  • 47 Muetterties EL, Stein J. Chem. Rev. 1979; 79: 479
  • 48 Eisenberg R, Hendriksen DE. Adv. Catal. 1979; 28: 79
  • 49 Masters C. Adv. Organomet. Chem. 1979; 17: 61
  • 50 Herrmann WA. Angew. Chem. Int. Ed. Engl. 1982; 21: 117
  • 51 Bianchini C, Meli A. Organometallics 1985; 4: 1537
  • 52 Thorn DL. Organometallics 1982; 1: 197
  • 53 Clark GR, Hoskins SV, Roper WR. J. Organomet. Chem. 1982; 234: C9
  • 54 Wayland BB, Woods BA, Minda VM. J. Chem. Soc., Chem. Commun. 1982; 634
  • 55 Clark GR, Headford CEL, Marsden K, Roper WR. J. Organomet. Chem. 1982; 231: 335
  • 56 Berke H, Bankhardt W, Huttner G, von Seyerl J, Zsolnai L. Chem. Ber. 1981; 114: 2754
  • 57 Gambarotta S, Floriani C, Chiesi-Villa A, Guastini C. J. Am. Chem. Soc. 1982; 104: 2019
  • 58 Herberich GE, Okuda J. Angew. Chem. Int. Ed. Engl. 1985; 24: 402
  • 59 Head RA. J. Chem. Soc., Dalton Trans. 1982; 1637
  • 60 Thiyagarajan B, Michalczyk L, Bollinger JC, Huffman JC, Bruno JW. Organometallics 1996; 15: 1989
  • 61 van Asselt A, Burger BJ, Gibson VC, Bercaw JE. J. Am. Chem. Soc. 1986; 108: 5347
  • 62 Buhro WE, Patton AT, Strouse CE, Gladysz JA, McCormick FB, Etter MC. J. Am. Chem. Soc. 1983; 105: 1056
  • 63 Levison JJ, Robinson SD. J. Chem. Soc. A 1970; 2947
  • 64 Gambarotta S, Floriani C, Chiesi-Villa A, Guastini C. Organometallics 1986; 5: 2425
  • 65 Tikkanen WR, Petersen JL. Organometallics 1984; 3: 1651
  • 66 Wayland BB, Woods BA. J. Chem. Soc., Chem. Commun. 1981; 700
  • 67 Wayland BB, Van Voorhees SL, Wilker C. Inorg. Chem. 1986; 25: 4039