1.3. 2 Resolution of Alcohols, Amines, Acids, and Esters by Nonhydrolytic Processes
Book
Editors: Faber, K.; Fessner, W.-D.; Turner, N. J.
Title: Biocatalysis in Organic Synthesis 1
Print ISBN: 9783131741318; Online ISBN: 9783131975218; Book DOI: 10.1055/b-003-125815
1st edition © 2015. Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Subjects: Organic Chemistry
Science of Synthesis Reference Libraries
Parent publication
Title: Science of Synthesis
DOI: 10.1055/b-00000101
Type: Multivolume Edition
Abstract
The use of hydrolases has become a conventional process in organic synthesis, not only for the preparation of optically pure compounds, but also for regio- and chemoselective processes. Their utility for selective transformations under mild reaction conditions make hydrolases attractive catalysts for performing certain transformations that are difficult to achieve by nonenzymatic strategies. Nowadays, many companies use lipases for the preparation of high-added-value compounds and pharmaceuticals because of the advantages of hydrolase-catalyzed processes, which include cost and environmental benefits. Their commercial availability, lack of cofactor dependency, and activity in both aqueous and organic media has allowed the development of asymmetric transformations which are summarized in this chapter. After a brief general introduction discussing the potential of hydrolases in organic synthesis, asymmetric reverse hydrolytic processes are analyzed, substituting the conventional hydrolase nucleophile, water, for other species such as alcohols, amines, esters, or ammonia. The kinetic resolution and dynamic kinetic resolution reactions of alcohols and amines are presented, using esters or carbonates for the production of esters, amides, and carbamates in optically active form. Finally, the resolution of carboxylic acids or esters is described via less-employed interesterification, aminolysis, and ammonolysis processes.
Key words
acylation - alcohols - alkoxycarbonylation - amines - aminolysis - ammonolysis - asymmetric synthesis - carbonates - esters - hydrolases - interesterification - kinetic resolution - lipases - transesterification- 3 Drauz K, Gröger H, May O. Enzyme Catalysis in Organic Synthesis. Wiley VCH; Weinheim, Germany 2012
- 6 Carrea G, Riva S. Organic Synthesis with Enzymes in Non-Aqueous Media. Wiley VCH; Weinheim, Germany 2008
- 30 Hara P, Turcu M.-C, Sundell R, Toşa M, Paizs C, Irimie F.-D, Kanerva LT. Tetrahedron: Asymmetry 2013; 24: 142
- 35 Brem J, Naghi M, Toşa M.-I, Boros Z, Poppe L, Irimie F.-D, Paizs C. Tetrahedron: Asymmetry 2011; 22: 1672
- 36 Regla I, Luviano-Jardón A, Demare P, Hong E, Torres-Gavilán A, López-Munguía A, Castillo E. Tetrahedron: Asymmetry 2008; 19: 2439
- 39 Milner SE, Brossat M, Moody TS, Elcoate CJ, Lawrence SE, Maguire AR. Tetrahedron: Asymmetry 2010; 21: 1011
- 44 Kourist R, Krishna SH, Patel JS, Bartnek F, Hitchman TS, Weiner DP, Bornscheuer UT. Org. Biomol. Chem. 2007; 5: 3310
- 45 Wiggers M, Holt J, Kourist R, Bartsch S, Arends IWCE, Minnaard AJ, Bornscheuer UT, Hanefeld U. J. Mol. Catal. B: Enzym. 2009; 60: 82
- 46 Nguyen G.-S, Thompson ML, Grogan G, Bornscheuer UT, Kourist R. J. Mol. Catal. B: Enzym. 2011; 70: 88
- 47 Domínguez de María P, Carboni-Oerlemans C, Tuin B, Bargeman G, van der Meer A, van Gemert R. J. Mol. Catal. B: Enzym. 2005; 37: 36
- 72 Haak RM, Berthiol F, Jerphagnon T, Gayet AJA, Tarabiono C, Postema CP, Ritleng V, Pfeffer M, Janssen DB, Minnaard AJ, Feringa BL, de Vries JG. J. Am. Chem. Soc. 2008; 130: 13508
- 83 Mangas-Sánchez J, Rodríguez-Mata M, Busto E, Gotor-Fernández V, Gotor V. J. Org. Chem. 2009; 74: 5304
- 98 Nechab M, El Blidi L, Vanthuyne N, Gastaldi S, Bertrand MP, Gil G. Org. Biomol. Chem. 2008; 6: 3917
- 100 Morgan B, Zaks A, Dodds DR, Liu J, Jain R, Megati S, Njoroge FG, Girijavallabhan VM. J. Org. Chem. 2000; 65: 5451
- 103 Breen G, Practical Methods for Biocatalysis and Biotransformations Whittall J, Sutton PW. John Wiley & Sons Chichester, UK 2010; 129
- 106 Alatorre-Santamaría S, Rodríguez-Mata M, Gotor-Fernández V, de Mattos MC, Sayago FJ, Jiménez AI, Cativiela C, Gotor V. Tetrahedron: Asymmetry 2008; 19: 1714
- 110 Breuer M, Ditrich K, Habicher T, Hauer B, Keßeler M, Stürmer R, Zelinski T. Angew. Chem. Int. Ed. 2004; 43: 788
- 111 Garg H, Francella N, Tony KA, Augustine LA, Barchi Jr JJ, Fantini J, Puri A, Mootoo DR, Blumenthal R. Antiviral Res. 2008; 80: 54
- 117 Le Joubioux F, Henda YB, Bridiau N, Achour O, Graber M, Maugard T. J. Mol. Catal. B: Enzym. 2013; 85–86: 193
- 129 Thalén LK, Zhao D, Sortais J.-B, Paetzold J, Hoben C, Bäckvall J.-E. Chem.–Eur. J. 2009; 15: 3403
- 131 Rodríguez-Mata M, Gotor-Fernández V, González-Sabín J, Rebolledo F, Gotor V. Org. Biomol. Chem. 2011; 9: 2274
- 133 El Blidi L, Vanthuyne N, Siri D, Gastaldi S, Bertrand MP, Gil G. Org. Biomol. Chem. 2010; 8: 4165
- 137 Page M, Blacker J, Stirling M, Practical Methods for Biocatalysis and Biotransformations Whittall J, Sutton PW. John Wiley & Sons Chichester, UK 2010; 141
- 138 Morán-Ramallal R, Gotor-Fernández V, Laborda P, Sayago FJ, Cativiela C, Gotor V. Org. Lett. 2012; 14: 1696
- 145 Brem J, Toşa M.-I, Paizs C, Munceanu A, Matković-Čalogović D, Irimie F.-D. Tetrahedron: Asymmetry 2010; 21: 1993