Faber, K. et al.: 2015 Science of Synthesis, 1: Biocatalysis in Organic Synthesis 1 DOI: 10.1055/sos-SD-214-00139
Biocatalysis in Organic Synthesis 1

1.3.2 Resolution of Alcohols, Amines, Acids, and Esters by Nonhydrolytic Processes

More Information

Book

Editors: Faber, K.; Fessner, W.-D.; Turner, N. J.

Authors: Asano, Y.; Babich, L.; Bertau, M.; Cobucci-Ponzano, B.; Díaz-Rodríguez, A.; Engel, U.; Faber, K.; Flitsch, S. L.; Glueck, S. M.; Gotor-Fernández, V.; Green, A. P.; Hall, M.; Hartog, A. F.; Hepworth, L. J.; Hollmann, F.; Jeromin, G. E.; Lauchli, R.; Lavandera, I.; Liese, A.; Martínková, L.; Moracci, M.; Pesci, L.; Rodríguez-Mata, M.; Rozzell, D.; Rudat, J.; Schmidberger, J. W.; Servi, S.; Slomka, C.; Syldatk, C.; Tasnádi, G.; Tessaro, D.; Veselá, A. B.; Voglmeir, J.; Wever, R.

Title: Biocatalysis in Organic Synthesis 1

Print ISBN: 9783131741318; Online ISBN: 9783131975218; Book DOI: 10.1055/b-003-125815

Subjects: Organic Chemistry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Type: Multivolume Edition

 


Abstract

The use of hydrolases has become a conventional process in organic synthesis, not only for the preparation of optically pure compounds, but also for regio- and chemoselective processes. Their utility for selective transformations under mild reaction conditions make hydrolases attractive catalysts for performing certain transformations that are difficult to achieve by nonenzymatic strategies. Nowadays, many companies use lipases for the preparation of high-added-value compounds and pharmaceuticals because of the advantages of hydrolase-catalyzed processes, which include cost and environmental benefits. Their commercial availability, lack of cofactor dependency, and activity in both aqueous and organic media has allowed the development of asymmetric transformations which are summarized in this chapter. After a brief general introduction discussing the potential of hydrolases in organic synthesis, asymmetric reverse hydrolytic processes are analyzed, substituting the conventional hydrolase nucleophile, water, for other species such as alcohols, amines, esters, or ammonia. The kinetic resolution and dynamic kinetic resolution reactions of alcohols and amines are presented, using esters or carbonates for the production of esters, amides, and carbamates in optically active form. Finally, the resolution of carboxylic acids or esters is described via less-employed interesterification, aminolysis, and ammonolysis processes.

 
  • 1 Reetz MT. J. Am. Chem. Soc. 2013; 135: 12480
  • 2 Clouthier CM, Pelletier JN. Chem. Soc. Rev. 2012; 41: 1585
  • 3 Drauz K, Gröger H, May O. Enzyme Catalysis in Organic Synthesis. Wiley VCH; Weinheim, Germany 2012
  • 4 Bornscheuer UT, Kazlauskas RJ. Hydrolases in Organic Synthesis. Wiley VCH; Weinheim, Germany 2006
  • 5 Fersht A. Structure and Mechanism in Protein Science. W. H. Freeman; New York 1999
  • 6 Carrea G, Riva S. Organic Synthesis with Enzymes in Non-Aqueous Media. Wiley VCH; Weinheim, Germany 2008
  • 7 Kirchner G, Scollar MP, Klibanov AM. J. Am. Chem. Soc. 1985; 107: 7072
  • 8 Klibanov AM. Trends Biochem. Sci. 1989; 14: 141
  • 9 Carrea G, Ottolina G, Riva S. Trends Biotechnol. 1995; 13: 63
  • 10 Ghanem A, Aboul-Enein HY. Tetrahedron: Asymmetry 2004; 15: 3331
  • 11 Ghanem A. Tetrahedron 2007; 63: 1721
  • 12 Cantone S, Hanefeld U, Basso A. Green Chem. 2007; 9: 954
  • 13 Fan Y, Qian J. J. Mol. Catal. B: Enzym. 2010; 66: 1
  • 14 Verger R. Trends Biotechnol. 1997; 15: 32
  • 15 Adlercreutz P. Chem. Soc. Rev. 2013; 42: 6406
  • 16 Gotor-Fernández V, Brieva R, Gotor V. J. Mol. Catal. B: Enzym. 2006; 40: 111
  • 17 van Rantwijk F, Sheldon RA. Tetrahedron 2004; 60: 501
  • 18 Ahmed M, Kelly T, Ghanem A. Tetrahedron 2012; 68: 6781
  • 19 Klibanov AM. Nature (London) 2001; 409: 241
  • 20 Doukyu N, Ogino H. Biochem. Eng. J. 2010; 48: 270
  • 21 Laane C, Boeren S, Vos K, Veeger C. Biotechnol. Bioeng. 1987; 30: 81
  • 22 Faber K, Riva S. Synthesis 1992; 895
  • 23 Hanefeld U. Org. Biomol. Chem. 2003; 1: 2405
  • 24 Paravidino M, Hanefeld U. Green Chem. 2011; 13: 2651
  • 25 Kazlauskas RJ, Weissfloch ANE, Rappaport AT, Cuccia LA. J. Org. Chem. 1991; 56: 2656
  • 26 Frykman H, Öhrner N, Norin T, Hult K. Tetrahedron Lett. 1993; 34: 1367
  • 27 Kita Y, Takebe Y, Murata K, Naka T, Akai S. Tetrahedron Lett. 1996; 37: 7369
  • 28 Weber HK, Stecher H, Faber K. Biotechnol. Lett. 1995; 17: 803
  • 29 Maywald M, Pfaltz A. Synthesis 2009; 3654
  • 30 Hara P, Turcu M.-C, Sundell R, Toşa M, Paizs C, Irimie F.-D, Kanerva LT. Tetrahedron: Asymmetry 2013; 24: 142
  • 31 Andrade LH, Barcellos T. Org. Lett. 2009; 11: 3052
  • 32 Comasseto JV, Gariani RA. Tetrahedron 2009; 65: 8447
  • 33 Ko S.-J, Lim JY, Jeon NY, Won K, Ha D.-C, Kim BT, Lee H. Tetrahedron: Asymmetry 2009; 20: 1109
  • 34 Kataoka S, Takeuchi Y, Harada A, Yamada M, Endo A. Green Chem. 2010; 12: 331
  • 35 Brem J, Naghi M, Toşa M.-I, Boros Z, Poppe L, Irimie F.-D, Paizs C. Tetrahedron: Asymmetry 2011; 22: 1672
  • 36 Regla I, Luviano-Jardón A, Demare P, Hong E, Torres-Gavilán A, López-Munguía A, Castillo E. Tetrahedron: Asymmetry 2008; 19: 2439
  • 37 Ketterer C, Wünsch B. Eur. J. Org. Chem. 2012; 2428
  • 38 Pinedo-Revilla C, Aleu J, Benito MG, Collado IG. Org. Biomol. Chem. 2010; 8: 3784
  • 39 Milner SE, Brossat M, Moody TS, Elcoate CJ, Lawrence SE, Maguire AR. Tetrahedron: Asymmetry 2010; 21: 1011
  • 40 Utczás M, Székely E, Forró E, Szóllósy Á, Fülöp F, Simándi B. Tetrahedron Lett. 2011; 52: 3916
  • 41 Bhuniya R, Nanda S. Org. Biomol. Chem. 2012; 10: 536
  • 42 Deska J, Bäckvall J.-E. Org. Biomol. Chem. 2009; 7: 3379
  • 43 Serra S. Tetrahedron: Asymmetry 2011; 22: 619
  • 44 Kourist R, Krishna SH, Patel JS, Bartnek F, Hitchman TS, Weiner DP, Bornscheuer UT. Org. Biomol. Chem. 2007; 5: 3310
  • 45 Wiggers M, Holt J, Kourist R, Bartsch S, Arends IWCE, Minnaard AJ, Bornscheuer UT, Hanefeld U. J. Mol. Catal. B: Enzym. 2009; 60: 82
  • 46 Nguyen G.-S, Thompson ML, Grogan G, Bornscheuer UT, Kourist R. J. Mol. Catal. B: Enzym. 2011; 70: 88
  • 47 Domínguez de María P, Carboni-Oerlemans C, Tuin B, Bargeman G, van der Meer A, van Gemert R. J. Mol. Catal. B: Enzym. 2005; 37: 36
  • 48 Özdemirhan D, Sezer S, Sönmez Y. Tetrahedron: Asymmetry 2008; 19: 2717
  • 49 Takayama S, Lee ST, Hung S.-C, Wong C.-H. Chem. Commun. (Cambridge) 1999; 127
  • 50 Kanerva LT, Rahiala K, Vänttinen E. J. Chem. Soc., Perkin Trans. 1 1992; 1759
  • 51 Kamal A, Rao MV. Tetrahedron: Asymmetry 1991; 2: 751
  • 52 Maestro A, Astorga C, Gotor V. Tetrahedron: Asymmetry 1997; 8: 3153
  • 53 López-García M, Alfonso I, Gotor V. Chem.–Eur. J. 2004; 10: 3006
  • 54 Francalanci F, Cesti P, Cabri W, Bianchi D, Martinengo T, Foà M. J. Org. Chem. 1987; 52: 5079
  • 55 Levy LM, de Gonzalo G, Gotor V. Tetrahedron: Asymmetry 2004; 15: 2051
  • 56 Brocklehurst CE, Laumen K, La Veccia L, Shaw D, Vögtle M. Org. Process Res. Dev. 2011; 15: 294
  • 57 Pàmies O, Bäckvall J.-E. Chem. Rev. 2003; 103: 3247
  • 58 Martín-Matute B, Bäckvall J.-E. Curr. Opin. Chem. Biol. 2007; 11: 226
  • 59 Lee JH, Han K, Kim M.-J, Park J. Eur. J. Org. Chem. 2010; 999
  • 60 Pellissier H. Tetrahedron 2011; 67: 3769
  • 61 Hoyos P, Pace V, Alcántara AR. Adv. Synth. Catal. 2012; 354: 2585
  • 62 Dinh PM, Howarth JA, Hudnott AR, Williams JMJ, Harris W. Tetrahedron Lett. 1996; 37: 7623
  • 63 Zhu Y, Fow K.-L, Chuah G.-K, Jaenicke S. Chem.–Eur. J. 2007; 13: 541
  • 64 Cheng Y, Xu G, Wu J, Zhang C, Yang L. Tetrahedron Lett. 2010; 51: 2366
  • 65 Persson BA, Larsson ALE, Le Ray MM, Bäckvall J.-E. J. Am. Chem. Soc. 1999; 121: 1645
  • 66 Choi JH, Kim YH, Nam SH, Shin ST, Kim M.-J, Park J. Angew. Chem. Int. Ed. 2002; 41: 2373
  • 67 Berkessel A, Sebastian-Ibarz ML, Müller TN. Angew. Chem. Int. Ed. 2006; 45: 6567
  • 68 Marr AC, Pollock CL, Saunders GC. Organometallics 2007; 26: 3283
  • 69 Chen Q, Yuan C. Chem. Commun. (Cambridge) 2008; 5333
  • 70 Lihammar R, Millet R, Bäckvall J.-E. Adv. Synth. Catal. 2011; 353: 2321
  • 71 Huerta FF, Laxmi YRS, Bäckvall J.-E. Org. Lett. 2000; 2: 1037
  • 72 Haak RM, Berthiol F, Jerphagnon T, Gayet AJA, Tarabiono C, Postema CP, Ritleng V, Pfeffer M, Janssen DB, Minnaard AJ, Feringa BL, de Vries JG. J. Am. Chem. Soc. 2008; 130: 13508
  • 73 Träff A, Bogár K, Warner M, Bäckvall J.-E. Org. Lett. 2008; 10: 4807
  • 74 Pàmies O, Bäckvall J.-E. Adv. Synth. Catal. 2001; 343: 726
  • 75 Pàmies O, Bäckvall J.-E. Adv. Synth. Catal. 2002; 344: 947
  • 76 Huerta FF, Bäckvall J.-E. Org. Lett. 2001; 3: 1209
  • 77 Fransson A.-BL, Borén L, Pàmies O, Bäckvall J.-E. J. Org. Chem. 2005; 70: 2582
  • 78 Lee D, Huh EA, Kim M.-J, Jung HM, Koh JH, Park J. Org. Lett. 2000; 2: 2377
  • 79 Akai S, Hanada R, Fujiwara N, Kita Y, Egi M. Org. Lett. 2010; 12: 4900
  • 80 Warner MC, Nagendiran A, Bogár K, Bäckvall J.-E. Org. Lett. 2012; 14: 5094
  • 81 Lihammar R, Millet R, Bäckvall J.-E. J. Org. Chem. 2013; 78: 12114
  • 82 Deska J, Ochoa CP, Bäckvall J.-E. Chem.–Eur. J. 2010; 16: 4447
  • 83 Mangas-Sánchez J, Rodríguez-Mata M, Busto E, Gotor-Fernández V, Gotor V. J. Org. Chem. 2009; 74: 5304
  • 84 Krumlinde P, Bogár K, Bäckvall J.-E. J. Org. Chem. 2009; 74: 7407
  • 85 Johnston EV, Bogár K, Bäckvall J.-E. J. Org. Chem. 2010; 75: 4596
  • 86 Träff A, Lihammar R, Bäckvall J.-E. J. Org. Chem. 2011; 76: 3917
  • 87 Ghislieri D, Turner NJ. Top. Catal. 2014; 57: 284
  • 88 Breen GF. Tetrahedron: Asymmetry 2004; 15: 1427
  • 89 Liljeblad A, Kallio P, Vainio M, Niemi J, Kanerva LT. Org. Biomol. Chem. 2010; 8: 886
  • 90 Kazlauskas RJ, Weissfloch ANE. J. Mol. Catal. B: Enzym. 1997; 3: 65
  • 91 Höhne M, Bornscheuer UT. ChemCatChem 2009; 1: 42
  • 92 González-Sabín J, Gotor V, Rebolledo F. Tetrahedron: Asymmetry 2002; 13: 1315
  • 93 Alatorre-Santamaría S, Gotor-Fernández V, Gotor V. Eur. J. Org. Chem. 2009; 2533
  • 94 González-Sabín J, Gotor V, Rebolledo F. Tetrahedron: Asymmetry 2004; 15: 481
  • 95 Ditrich K. Synthesis 2008; 2283
  • 96 Cammenberg M, Hult K, Park S. ChemBioChem 2006; 7: 1745
  • 97 Nechab M, Azzi N, Vanthuyne N, Bertrand MP, Gastaldi S, Gil G. J. Org. Chem. 2007; 72: 6918
  • 98 Nechab M, El Blidi L, Vanthuyne N, Gastaldi S, Bertrand MP, Gil G. Org. Biomol. Chem. 2008; 6: 3917
  • 99 Queyroy S, Vanthuyne N, Gastaldi S, Bertrand MP, Gil G. Adv. Synth. Catal. 2012; 354: 1759
  • 100 Morgan B, Zaks A, Dodds DR, Liu J, Jain R, Megati S, Njoroge FG, Girijavallabhan VM. J. Org. Chem. 2000; 65: 5451
  • 101 Gotor V. Bioorg. Med. Chem. 1999; 7: 2189
  • 102 Orsat B, Alper PB, Moree W, Mak C.-P, Wong C.-H. J. Am. Chem. Soc. 1996; 118: 712
  • 103 Breen G, Practical Methods for Biocatalysis and Biotransformations Whittall J, Sutton PW. John Wiley & Sons Chichester, UK 2010; 129
  • 104 Gotor-Fernández V, Fernández-Torres P, Gotor V. Tetrahedron: Asymmetry 2006; 17: 2558
  • 105 López-Iglesias M, Busto E, Gotor V, Gotor-Fernández V. J. Org. Chem. 2012; 77: 8049
  • 106 Alatorre-Santamaría S, Rodríguez-Mata M, Gotor-Fernández V, de Mattos MC, Sayago FJ, Jiménez AI, Cativiela C, Gotor V. Tetrahedron: Asymmetry 2008; 19: 1714
  • 107 Ager DJ, Prakash I, Schaad DR. Chem. Rev. 1996; 96: 835
  • 108 Lait SM, Rankic DA, Keay BA. Chem. Rev. 2007; 107: 767
  • 109 Wang G, Liu X, Zhao G. Tetrahedron: Asymmetry 2005; 16: 1873
  • 110 Breuer M, Ditrich K, Habicher T, Hauer B, Keßeler M, Stürmer R, Zelinski T. Angew. Chem. Int. Ed. 2004; 43: 788
  • 111 Garg H, Francella N, Tony KA, Augustine LA, Barchi Jr JJ, Fantini J, Puri A, Mootoo DR, Blumenthal R. Antiviral Res. 2008; 80: 54
  • 113 Furutani T, Furui M, Ooshima H, Kato J. Enzyme Microb. Technol. 1996; 19: 578
  • 114 Laszlo JA, Jackson M, Blanco RM. J. Mol. Catal. B: Enzym. 2011; 69: 60
  • 115 Gotor V, Brieva R, Rebolledo F. J. Chem. Soc., Chem. Commun. 1988; 957
  • 116 Kanerva LT, Kosonen M, Vänttinen E, Huuhtanen TT, Dahlqvist M. Acta Chem. Scand. 1992; 46: 1101
  • 117 Le Joubioux F, Henda YB, Bridiau N, Achour O, Graber M, Maugard T. J. Mol. Catal. B: Enzym. 2013; 85–86: 193
  • 118 Syrén P.-O, Le Joubioux F, Henda YB, Maugard T, Hult K, Graber M. ChemCatChem 2013; 5: 1842
  • 120 Torre O, Gotor-Fernández V, Gotor V. Tetrahedron: Asymmetry 2006; 17: 860
  • 121 Ahn Y, Ko S.-B, Kim M.-J, Park J. Coord. Chem. Rev. 2008; 252: 647
  • 122 Reetz MT, Schimossek K. Chimia 1996; 50: 668
  • 123 Kim M.-J, Kim W.-H, Han K, Choi YK, Park J. Org. Lett. 2007; 9: 1157
  • 124 Cheng G, Xia B, Wu Q, Lin X. RSC Adv. 2013; 3: 9820
  • 125 Parvulescu AN, Jacobs PA, De Vos DE. Chem.–Eur. J. 2007; 13: 2034
  • 126 Xu G, Dai X, Fu S, Wu J, Yang L. Tetrahedron Lett. 2014; 55: 397
  • 127 Parvulescu AN, Jacobs PA, De Vos DE. Adv. Synth. Catal. 2008; 350: 113
  • 128 Paetzold J, Bäckvall J.-E. J. Am. Chem. Soc. 2005; 127: 17620
  • 129 Thalén LK, Zhao D, Sortais J.-B, Paetzold J, Hoben C, Bäckvall J.-E. Chem.–Eur. J. 2009; 15: 3403
  • 130 Pàmies O, Éll AH, Samec JSM, Hermanns N, Bäckvall J.-E. Tetrahedron Lett. 2002; 43: 4699
  • 131 Rodríguez-Mata M, Gotor-Fernández V, González-Sabín J, Rebolledo F, Gotor V. Org. Biomol. Chem. 2011; 9: 2274
  • 132 Hoben CE, Kanupp L, Bäckvall J.-E. Tetrahedron Lett. 2008; 49: 977
  • 133 El Blidi L, Vanthuyne N, Siri D, Gastaldi S, Bertrand MP, Gil G. Org. Biomol. Chem. 2010; 8: 4165
  • 134 Poulhès F, Vanthuyne N, Bertrand MP, Gastaldi S, Gil G. J. Org. Chem. 2011; 76: 7281
  • 135 Liljeblad A, Kiviniemi A, Kanerva LT. Tetrahedron 2004; 60: 671
  • 136 Stirling M, Blacker J, Page MI. Tetrahedron Lett. 2007; 48: 1247
  • 137 Page M, Blacker J, Stirling M, Practical Methods for Biocatalysis and Biotransformations Whittall J, Sutton PW. John Wiley & Sons Chichester, UK 2010; 141
  • 138 Morán-Ramallal R, Gotor-Fernández V, Laborda P, Sayago FJ, Cativiela C, Gotor V. Org. Lett. 2012; 14: 1696
  • 139 Brodzka A, Koszelewski D, Cwiklak M, Ostaszewski R. Tetrahedron: Asymmetry 2013; 24: 427
  • 140 Irimescu R, Kato K. J. Mol. Catal. B: Enzym. 2004; 30: 189
  • 141 Irimescu R, Kato K. Tetrahedron Lett. 2004; 45: 523
  • 142 Rau RM, Seddon KR, van Rantwijk F, Sheldon RA. Org. Lett. 2000; 2: 4189
  • 143 Reis JS, Andrade LH. Tetrahedron: Asymmetry 2012; 23: 1294
  • 144 Alatorre-Santamaría S, Gotor-Fernández V, Gotor V. Tetrahedron: Asymmetry 2010; 21: 2307
  • 145 Brem J, Toşa M.-I, Paizs C, Munceanu A, Matković-Čalogović D, Irimie F.-D. Tetrahedron: Asymmetry 2010; 21: 1993
  • 146 Bencze LC, Paizs C, Toşa M.-I, Trif M, Irimie F.-D. Tetrahedron: Asymmetry 2010; 21: 1999
  • 147 Turcu M.-C, Perkiö P, Kanerva LT. Tetrahedron: Asymmetry 2010; 21: 739
  • 148 Li X.-G, Kanerva LT. Org. Lett. 2006; 8: 5593
  • 149 Liljeblad A, Lindborg J, Kanerva A, Katajisto J, Kanerva LT. Tetrahedron Lett. 2002; 43: 2471
  • 150 Liljeblad A, Kavenius H.-M, Tähtinen P, Kanerva LT. Tetrahedron: Asymmetry 2007; 18: 181
  • 151 Gotor-Fernández V, Gotor V. Curr. Org. Chem. 2006; 10: 1125
  • 152 Gotor-Fernández V, Gotor V, Asymmetric Organic Synthesis with Enzymes Gotor V, Alfonso I, García-Urdiales E. Wiley VCH Weinheim, Germany 2008; 171
  • 153 Gotor-Fernández V, Busto E, Gotor V. Adv. Synth. Catal. 2006; 348: 797
  • 154 Badjić JD, Kadnikova EN, Kostić NM. Org. Lett. 2001; 3: 2025
  • 155 Starmans WAJ, Doppen RG, Thijs L, Zwanenburg B. Tetrahedron: Asymmetry 1998; 9: 429
  • 156 García-Urdiales E, Rebolledo F, Gotor V. Tetrahedron: Asymmetry 1999; 10: 721
  • 157 Sánchez VM, Rebolledo F, Gotor V. J. Org. Chem. 1999; 64: 1464
  • 158 Marciello M, Filice M, Palomo JM. Catal. Sci. Technol. 2012; 2: 1531