1.4. 1 Hydrolysis of Nitriles to Amides
Book
Editors: Faber, K.; Fessner, W.-D.; Turner, N. J.
Title: Biocatalysis in Organic Synthesis 1
Print ISBN: 9783131741318; Online ISBN: 9783131975218; Book DOI: 10.1055/b-003-125815
1st edition © 2015. Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Subjects: Organic Chemistry
Science of Synthesis Reference Libraries
Parent publication
Title: Science of Synthesis
DOI: 10.1055/b-00000101
Type: Multivolume Edition
Abstract
Nitrile hydratase (NHase; EC 4.2.1.84) catalyzes the hydration of nitriles to form amides. The reaction catalyzed by nitrile hydratase is strikingly fast and versatile and a wide range of nitriles, including aromatic and arylalkyl nitriles, α- and β-substituted nitriles, and aminonitriles can be hydrated to the corresponding amides. Although nitrile hydratase generally has low stereoselectivity, its use in conjunction with highly stereospecific amidases provides a valuable route for the stereoselective synthesis of carboxylic acids. The powerful nature of nitrile hydratase has had a huge impact on the progress of applied microbiology, enzyme engineering, and enzyme-catalyzed organic synthesis. The best-known applications of nitrile hydratase on an industrial scale are the production of acrylamide and nicotinamide from acrylonitrile and pyridine-3-carbonitrile, respectively.
This chapter provides an overview of the current scope of nitrile hydratase mediated reactions and focuses on whole-cell biotransformations.
Key words
nitriles - amides - nitrile hydratase - hydrolysis - hydration - chemoselectivity - carboxylic acids - kinetic resolution - desymmetrization - whole-cell biotransformations - aldoxime–nitrile pathway- 4 Asano Y, Manual of Industrial Microbiology and Biotechnology Baltz RH, Demain AL, Davies JE. American Society for Microbiology Washington, DC 2010; 441
- 17 Hann EC, Eisenberg A, Fager SK, Perkins NE, Gallagher FG, Cooper SM, Gavagan JE, Stieglitz B, Hennessey SM, DiCosimo R. Bioorg. Med. Chem. 1999; 7: 2239
- 19 Huang W, Jia J, Cummings J, Nelson M, Schneider G, Lindqvist Y. Structure (Oxford, U. K.) 1997; 5: 691
- 21 Yamanaka Y, Hashimoto K, Ohtaki A, Noguchi K, Yohda M, Odaka M. JBIC, J. Biol. Inorg. Chem. 2010; 15: 655
- 22 Kuhn ML, Martinez S, Gumataotao N, Bornscheuer U, Liu D, Holz RC. Biochem. Biophys. Res. Commun. 2012; 424: 365
- 25 Hourai S, Miki M, Takashima Y, Mitsuda S, Yanagi K. Biochem. Biophys. Res. Commun. 2003; 312: 340
- 27 Nishiyama M, Horinouchi S, Kobayashi M, Nagasawa T, Yamada H, Beppu T. J. Bacteriol. 1991; 173: 2465
- 35 Asano Y, Kaul P, Comprehensive Chirality Carreira EM, Yamamoto H. Elsevier Amsterdam, The Netherlands 2012; 7. 122
- 36 Endo I, Nojiri M, Tsujimura M, Nakasako M, Nagashima S, Yohda M, Odaka M. J. Inorg. Biochem. 2001; 83: 247
- 37 Klempier N, Winkler M, Modern Biocatalysis: Stereoselective and Environmentally Friendly Reactions Fessner W.-D, Anthonsen T. Wiley-VCH Weinheim, Germany 2009; 247
- 42 DiCosimo R, Biocatalysis in the Pharmaceutical and Biotechnology Industries Patel RN. CRC Boca Raton, FL 2007; 1
- 52 Beard T, Cohen MA, Parratt JS, Turner NJ, Crosby J, Moilliet J. Tetrahedron: Asymmetry 1993; 4: 1085
- 55 Bianchi D, Battistel E, Cesti P, Golini P, Tassinari R. Appl. Microbiol. Biotechnol. 1993; 40: 53
- 58 Matoishi K, Sano A, Imai N, Yamazaki T, Yokoyama M, Sugai T, Ohta H. Tetrahedron: Asymmetry 1998; 9: 1097
- 59 Yokoyama M, Kashiwagi M, Iwasaki M, Fuhshuku K.-I, Ohta H, Sugai T. Tetrahedron: Asymmetry 2004; 15: 2817
- 60 Wegman MA, Heinemann U, van Rantwijk F, Stolz A, Sheldon RA. J. Mol. Catal. B: Enzym. 2001; 11: 249