Faber, K. et al.: 2015 Science of Synthesis, 1: Biocatalysis in Organic Synthesis 1 DOI: 10.1055/sos-SD-214-00188
Biocatalysis in Organic Synthesis 1

1.4.1 Hydrolysis of Nitriles to Amides

More Information

Book

Editors: Faber, K.; Fessner, W.-D.; Turner, N. J.

Authors: Asano, Y.; Babich, L.; Bertau, M.; Cobucci-Ponzano, B.; Díaz-Rodríguez, A.; Engel, U.; Faber, K.; Flitsch, S. L.; Glueck, S. M.; Gotor-Fernández, V.; Green, A. P.; Hall, M.; Hartog, A. F.; Hepworth, L. J.; Hollmann, F.; Jeromin, G. E.; Lauchli, R.; Lavandera, I.; Liese, A.; Martínková, L.; Moracci, M.; Pesci, L.; Rodríguez-Mata, M.; Rozzell, D.; Rudat, J.; Schmidberger, J. W.; Servi, S.; Slomka, C.; Syldatk, C.; Tasnádi, G.; Tessaro, D.; Veselá, A. B.; Voglmeir, J.; Wever, R.

Title: Biocatalysis in Organic Synthesis 1

Print ISBN: 9783131741318; Online ISBN: 9783131975218; Book DOI: 10.1055/b-003-125815

Subjects: Organic Chemistry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Type: Multivolume Edition

 


Abstract

Nitrile hydratase (NHase; EC 4.2.1.84) catalyzes the hydration of nitriles to form amides. The reaction catalyzed by nitrile hydratase is strikingly fast and versatile and a wide range of nitriles, including aromatic and arylalkyl nitriles, α- and β-substituted nitriles, and aminonitriles can be hydrated to the corresponding amides. Although nitrile hydratase generally has low stereoselectivity, its use in conjunction with highly stereospecific amidases provides a valuable route for the stereoselective synthesis of carboxylic acids. The powerful nature of nitrile hydratase has had a huge impact on the progress of applied microbiology, enzyme engineering, and enzyme-catalyzed organic synthesis. The best-known applications of nitrile hydratase on an industrial scale are the production of acrylamide and nicotinamide from acrylonitrile and pyridine-3-carbonitrile, respectively.

This chapter provides an overview of the current scope of nitrile hydratase mediated reactions and focuses on whole-cell biotransformations.

 
  • 1 Asano Y, Tani Y, Yamada H. Agric. Biol. Chem. 1980; 44: 2251
  • 2 Asano Y, Fujishiro K, Tani Y, Yamada H. Agric. Biol. Chem. 1982; 46: 1165
  • 3 Asano Y, Yasuda T, Tani Y, Yamada H. Agric. Biol. Chem. 1982; 46: 1183
  • 4 Asano Y, Manual of Industrial Microbiology and Biotechnology Baltz RH, Demain AL, Davies JE. American Society for Microbiology Washington, DC 2010; 441
  • 5 Kato Y, Ooi R, Asano Y. J. Mol. Catal. B: Enzym. 1999; 6: 249
  • 6 Kato Y, Nakamura K, Sakiyama H, Mayhew SG, Asano Y. Biochemistry 2000; 39: 800
  • 7 Sawai H, Sugimoto H, Kato Y, Asano Y, Shiro Y, Aono S. J. Biol. Chem. 2009; 284: 32089
  • 8 Kato Y, Ooi R, Asano Y. Appl. Environ. Microbiol. 2000; 66: 2290
  • 9 Asano Y. J. Biotechnol. 2002; 94: 65
  • 10 Dufour É, Storer AC, Ménard R. Biochemistry 1995; 34: 16382
  • 11 Oßwald S, Wajant H, Effenberger F. Eur. J. Biochem. 2002; 269: 680
  • 12 Yamada H, Kobayashi M. Biosci., Biotechnol., Biochem. 1996; 60: 1391
  • 13 Kobayashi M, Nagasawa T, Yamada H. Trends Biotechnol. 1992; 10: 402
  • 14 Kobayashi M, Shimizu S. Nature Biotechnol. 1998; 16: 733
  • 15 https://www.mrc.co.jp/rd/research/challenge.html (in Japanese; accessed July 2014).
  • 16 Shaw NM, Robins KT, Kiener A. Adv. Synth. Catal. 2003; 345: 425
  • 17 Hann EC, Eisenberg A, Fager SK, Perkins NE, Gallagher FG, Cooper SM, Gavagan JE, Stieglitz B, Hennessey SM, DiCosimo R. Bioorg. Med. Chem. 1999; 7: 2239
  • 18 Kato Y, Tsuda T, Asano Y. Eur. J. Biochem. 1999; 263: 662
  • 19 Huang W, Jia J, Cummings J, Nelson M, Schneider G, Lindqvist Y. Structure (Oxford, U. K.) 1997; 5: 691
  • 20 Song L, Wang M, Shi J, Xue Z, Wang M.-X, Qian S. Biochem. Biophys. Res. Commun. 2007; 362: 319
  • 21 Yamanaka Y, Hashimoto K, Ohtaki A, Noguchi K, Yohda M, Odaka M. JBIC, J. Biol. Inorg. Chem. 2010; 15: 655
  • 22 Kuhn ML, Martinez S, Gumataotao N, Bornscheuer U, Liu D, Holz RC. Biochem. Biophys. Res. Commun. 2012; 424: 365
  • 23 Miyanaga A, Fushinobu S, Ito K, Wakagi T. Biochem. Biophys. Res. Commun. 2001; 288: 1169
  • 24 Miyanaga A, Fushinobu S, Ito K, Shoun H, Wakagi T. Eur. J. Biochem. 2004; 271: 429
  • 25 Hourai S, Miki M, Takashima Y, Mitsuda S, Yanagi K. Biochem. Biophys. Res. Commun. 2003; 312: 340
  • 26 Komeda H, Kobayashi M, Shimizu S. Proc. Natl. Acad. Sci. U. S. A. 1996; 93: 4267
  • 27 Nishiyama M, Horinouchi S, Kobayashi M, Nagasawa T, Yamada H, Beppu T. J. Bacteriol. 1991; 173: 2465
  • 28 Hashimoto Y, Nishiyama M, Horinouchi S, Beppu T. Biosci., Biotechnol., Biochem. 1994; 58: 1859
  • 29 Kim S.-H, Oriel P. Enzyme Microb. Technol. 2000; 27: 492
  • 30 Yasukawa K, Hasemi R, Asano Y. Adv. Synth. Catal. 2011; 353: 2328
  • 31 Yu H.-M, Shi Y, Luo H, Tian Z.-L, Zhu Y.-Q, Shen Z.-Y. J. Mol. Catal. B: Enzym. 2006; 43: 80
  • 32 Mizunashi W, Nishiyama M, Horinouchi S, Beppu T. Appl. Microbiol. Biotechnol. 1998; 49: 568
  • 33 Ohta H. Chimia 1996; 50: 434
  • 34 Sugai T, Yamazaki T, Yokoyama M, Ohta H. Biosci., Biotechnol., Biochem. 1997; 61: 1419
  • 35 Asano Y, Kaul P, Comprehensive Chirality Carreira EM, Yamamoto H. Elsevier Amsterdam, The Netherlands 2012; 7. 122
  • 36 Endo I, Nojiri M, Tsujimura M, Nakasako M, Nagashima S, Yohda M, Odaka M. J. Inorg. Biochem. 2001; 83: 247
  • 37 Klempier N, Winkler M, Modern Biocatalysis: Stereoselective and Environmentally Friendly Reactions Fessner W.-D, Anthonsen T. Wiley-VCH Weinheim, Germany 2009; 247
  • 38 Wang M.-X. Top. Catal. 2005; 35: 117
  • 39 Wang M.-X. Top. Organomet. Chem. 2011; 36: 105
  • 40 Cowan DA, Cameron RA, Tsekoa TL. Adv. Appl. Microbiol. 2003; 52: 123
  • 41 Martínková L, Křen V. Biocatal. Biotransform. 2002; 20: 73
  • 42 DiCosimo R, Biocatalysis in the Pharmaceutical and Biotechnology Industries Patel RN. CRC Boca Raton, FL 2007; 1
  • 43 Prasad S, Bhalla TC. Biotechnol. Adv. 2010; 28: 725
  • 44 Vervisch K, Dʼhooghe M, Rutjes FPJT, De Kimpe N. Org. Lett. 2012; 14: 106
  • 45 Nagasawa T, Mathew CD, Mauger J, Yamada H. Appl. Environ. Microbiol. 1988; 54: 1766
  • 46 Mauger J, Nagasawa T, Yamada H. J. Biotechnol. 1988; 8: 87
  • 47 Meth-Cohn O, Wang M.-X. J. Chem. Soc., Perkin Trans. 1 1997; 1099
  • 48 Black GW, Gregson T, McPake CB, Perry JJ, Zhang M. Tetrahedron Lett. 2010; 51: 1639
  • 49 Kashiwagi M, Fuhshuku K.-I, Sugai T. J. Mol. Catal. B: Enzym. 2004; 29: 249
  • 50 Holtze MS, Sørensen J, Hansen HCB, Aamand J. Biodegradation 2006; 17: 503
  • 51 Kakeya H, Sakai N, Sugai T, Ohta H. Tetrahedron Lett. 1991; 32: 1343
  • 52 Beard T, Cohen MA, Parratt JS, Turner NJ, Crosby J, Moilliet J. Tetrahedron: Asymmetry 1993; 4: 1085
  • 53 Masutomo S, Inoue A, Kumagai K, Murai R, Mitsuda S. Biosci., Biotechnol., Biochem. 1995; 59: 720
  • 54 Layh N, Stolz A, Böhme J, Effenberger F, Knackmuss H.-J. J. Biotechnol. 1994; 33: 175
  • 55 Bianchi D, Battistel E, Cesti P, Golini P, Tassinari R. Appl. Microbiol. Biotechnol. 1993; 40: 53
  • 56 Effenberger F, Oßwald S. Tetrahedron: Asymmetry 2001; 12: 279
  • 57 Crosby J, Moilliet J, Parratt JS, Turner NJ. J. Chem. Soc., Perkin Trans. 1 1994; 1679
  • 58 Matoishi K, Sano A, Imai N, Yamazaki T, Yokoyama M, Sugai T, Ohta H. Tetrahedron: Asymmetry 1998; 9: 1097
  • 59 Yokoyama M, Kashiwagi M, Iwasaki M, Fuhshuku K.-I, Ohta H, Sugai T. Tetrahedron: Asymmetry 2004; 15: 2817
  • 60 Wegman MA, Heinemann U, van Rantwijk F, Stolz A, Sheldon RA. J. Mol. Catal. B: Enzym. 2001; 11: 249
  • 61 Wang M.-X, Lin S.-J. J. Org. Chem. 2002; 67: 6542
  • 62 Lin Z.-J, Zheng R.-C, Zheng Y.-G, Shen Y.-C. Biotechnol. Lett. 2011; 33: 1809
  • 63 Asano Y, Yamaguchi S. J. Am. Chem. Soc. 2005; 127: 7696
  • 64 Asano Y, Hölsch K, Enzyme Catalysis in Organic Synthesis Drauz K, Gröger H, May O. Wiley-VCH Weinheim, Germany 2012; 3. 1607
  • 65 Yasukawa K, Asano Y. Adv. Synth. Catal. 2012; 354: 3327
  • 66 Yokoyama M, Imai N, Sugai T, Ohta H. J. Mol. Catal. B: Enzym. 1996; 1: 135
  • 67 Kubáč D, Kaplan O, Elišáková V, Pátek M, Vejvoda V, Slámová K, Tóthová A, Lemaire M, Gallienne E, Lutz-Wahl S, Fischer L, Kuzma M, Pelantová H, van Pelt S, Bolte J, Křen V, Martínková L. J. Mol. Catal. B: Enzym. 2008; 50: 107