1.4. 2 Hydrolysis of Nitriles to Carboxylic Acids
Book
Editors: Faber, K.; Fessner, W.-D.; Turner, N. J.
Title: Biocatalysis in Organic Synthesis 1
Print ISBN: 9783131741318; Online ISBN: 9783131975218; Book DOI: 10.1055/b-003-125815
1st edition © 2015. Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Subjects: Organic Chemistry
Science of Synthesis Reference Libraries
Parent publication
Title: Science of Synthesis
DOI: 10.1055/b-00000101
Type: Multivolume Edition
Abstract
The synthesis of carboxylic acids from nitriles utilizes two pathways of nitrile biotransformations: direct hydrolysis by nitrilase and bienzymatic hydrolysis by nitrile hydratase and amidase. General procedures consist of using whole cells or isolated enzymes as catalysts in aqueous media with a small fraction of organic cosolvent. These methods afford a number of products that are often difficult to prepare by chemical means such as 3-oxoamides, cyano carboxamides and cyano carboxylic acids, enantiopure 2- and 3-substituted carboxylic acids and carboxamides, and enantiopure (hetero)cyclic carboxylic acids and carboxamides. Stereochemistry is mainly recognized by amidase, but in some cases also by nitrilase and nitrile hydratase. Nitrile hydrolysis has also been employed in chemoenzymatic and multienzymatic methods such as the synthesis of aromatic and heterocyclic amides from aldehydes, the synthesis of enantiopure 2-hydroxy acids from aldehydes, the synthesis of enantiopure 3-hydroxy acids from 3-oxonitriles, and the synthesis of cyclophellitols from benzo-1,4-quinone.
Key words
nitriles - carboxylic acids - carboxamides - aldehydes - nitrilase - nitrile hydratase - amidase - stereochemistry - chemoenzymatic methods - multienzymatic methods- 1 Fernandes BCM, Mateo C, Kiziak C, Chmura A, Wacker J, van Rantwijk F, Stolz A, Sheldon RA. Adv. Synth. Catal. 2006; 348: 2597
- 11 Robertson DE, Chaplin JA, DeSantis G, Podar M, Madden M, Chi E, Richardson T, Milan A, Miller M, Weiner DP, Wong K, McQuaid J, Farwell B, Preston LA, Tan X, Snead MA, Keller M, Mathur E, Kretz PL, Burk MJ, Short JM. Appl. Environ. Microbiol. 2004; 70: 2429
- 12 Mueller P, Egorova K, Vorgias CE, Boutou E, Trauthwein H, Verseck S, Antranikian G. Protein Expression Purif. 2006; 47: 672
- 13 Zhu D, Mukherjee C, Yang Y, Rios BE, Gallagher DT, Smith NN, Biehl ER, Hua L. J. Biotechnol. 2008; 133: 327
- 15 Kaplan O, Veselá AB, Petříčková A, Pasquarelli F, Pičmanová M, Rinágelová A, Bhalla TC, Pátek M, Martínková L. Mol. Biotechnol. 2013; 54: 996
- 19 http://www.codexis.com/documents/Codexis%20Codex%20NIT%20Screening%20Kit%20Protocol%20-%20UPDATED.pdf (accessed May 7, 2014).
- 22 Vejvoda V, Šveda O, Kaplan O, Přikrylová V, Elišáková V, Himl M, Kubáč D, Pelantová H, Kuzma M, Křen V, Martínková L. Biotechnol. Lett. 2007; 29: 1119
- 27 Zhang Z.-J, Xu J.-H, He Y.-C, Ouyang L.-M, Liu Y.-Y, Imanaka T. Process Biochem. (Oxford, U. K.) 2010; 45: 887
- 29 Zhang C.-S, Zhang Z.-J, Li C.-X, Yu H.-L, Zheng G.-W, Xu J.-H. Appl. Microbiol. Biotechnol. 2012; 95: 91
- 30 Sosedov O, Matzer K, Bürger S, Kiziak C, Baum S, Altenbuchner J, Chmura A, van Rantwijk F, Stolz A. Adv. Synth. Catal. 2009; 351: 1531
- 38 Mateo C, Chmura A, Rustler S, van Rantwijk F, Stolz A, Sheldon RA. Tetrahedron: Asymmetry 2006; 17: 320
- 40 Chmura A, Rustler S, Paravidino M, van Rantwijk F, Stolz A, Sheldon RA. Tetrahedron: Asymmetry 2013; 24: 1225
- 43 Kinfe HH, Chhiba V, Frederick J, Bode ML, Mathiba K, Steenkamp PA, Brady D. J. Mol. Catal. B: Enzym. 2009; 59: 231
- 46 DeSantis G, Wong K, Farwell B, Chatman K, Zhu Z, Tomlinson G, Huang H, Tan X, Bibbs L, Chen P, Kretz K, Burk MJ. J. Am. Chem. Soc. 2003; 125: 11476
- 50 Hann EC, Sigmund AE, Fager SK, Cooling FB, Gavagan JE, Bramucci MG, Chauhan S, Payne MS, DiCosimo R. Tetrahedron 2004; 60: 577