Faber, K. et al.: 2015 Science of Synthesis, 1: Biocatalysis in Organic Synthesis 1 DOI: 10.1055/sos-SD-214-00250
Biocatalysis in Organic Synthesis 1

1.4.4 Enzymatic Synthesis of Amides

More Information

Book

Editors: Faber, K.; Fessner, W.-D.; Turner, N. J.

Authors: Asano, Y.; Babich, L.; Bertau, M.; Cobucci-Ponzano, B.; Díaz-Rodríguez, A.; Engel, U.; Faber, K.; Flitsch, S. L.; Glueck, S. M.; Gotor-Fernández, V.; Green, A. P.; Hall, M.; Hartog, A. F.; Hepworth, L. J.; Hollmann, F.; Jeromin, G. E.; Lauchli, R.; Lavandera, I.; Liese, A.; Martínková, L.; Moracci, M.; Pesci, L.; Rodríguez-Mata, M.; Rozzell, D.; Rudat, J.; Schmidberger, J. W.; Servi, S.; Slomka, C.; Syldatk, C.; Tasnádi, G.; Tessaro, D.; Veselá, A. B.; Voglmeir, J.; Wever, R.

Title: Biocatalysis in Organic Synthesis 1

Print ISBN: 9783131741318; Online ISBN: 9783131975218; Book DOI: 10.1055/b-003-125815

Subjects: Organic Chemistry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Type: Multivolume Edition

 


Abstract

The synthesis of amides is one of the most common reactions performed in organic chemistry. Biocatalysis is an attractive alternative to chemical methodologies because of the mild reaction conditions and excellent atom economy, combined with the potential for stereoselectivity. Here, we provide an overview of the literature on enzyme-catalyzed amide-bond formation on a preparative scale, with a focus on nonnatural substrates.

 
  • 2 Gotor V, Gotor-Fernández V, Busto E, Comprehensive Chirality Carreira EM, Yamamoto H. Elsevier Amsterdam, The Netherlands 2012; 7. 101
  • 5 Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J, Sussman JL, Verschueren KHG, Goldman A. Protein Eng. 1992; 5: 197
  • 21 Gotor V, Brieva R, Rebolledo F. J. Chem. Soc., Chem. Commun. 1988; 957
  • 22 Kanerva LT, Kosonen M, Vänttinen E, Huuhtanen TT, Dahlqvist M. Acta Chem. Scand. 1992; 46: 1101
  • 29 van Pelt S, Teeuwen RLM, Janssen MHA, Sheldon RA, Dunn PJ, Howard RM, Kumar R, Martínez I, Wong JW. Green Chem. 2011; 13: 1791
  • 31 Chen S.-T, Tsai C.-F, Wang K.-T. Chem. Commun. (Cambridge) 1996; 165
  • 41 Ditrich K. Synthesis 2008; 2283
  • 45 Boros Z, Falus P, Márkus M, Weiser D, Oláh M, Hornyánszky G, Nagy J, Poppe L. J. Mol. Catal. B: Enzym. 2013; 85–86: 119
  • 51 Weiß M, Gröger H. Synlett 2009; 1251
  • 61 Parvulescu A, De Vos D, Jacobs P. Chem. Commun. (Cambridge) 2005; 5307
  • 77 Hanzawa S, Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Separation Flickinger MC, Drew SW. Wiley-Interscience New York 1999; 201
  • 84 van Pelt S, Zhang M, Otten LG, Holt J, Sorokin DY, van Rantwijk F, Black GW, Perry JJ, Sheldon RA. Org. Biomol. Chem. 2011; 9: 3011
  • 89 DeSantis G, DiCosimo R, Biocatalysis for the Pharmaceutical Industry: Discovery, Development, and Manufacturing Tao JA, Lin G.-Q, Liese A. Wiley Singapore 2009; 153
  • 90 Ashina Y, Suto M, Endo T, Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology Flickinger MC. Wiley-Interscience New York 2010; 1833
  • 94 Hann EC, Eisenberg A, Fager SK, Perkins NE, Gallagher FG, Cooper SM, Gavagan JE, Stieglitz B, Hennessey SM, DiCosimo R. Bioorg. Med. Chem. 1999; 7: 2239
  • 98 Wu Z.-L, Li Z.-Y. Chem. Commun. (Cambridge) 2003; 386
  • 105 Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K. Nature (London) 2012; 485: 185