Faber, K. et al.: 2015 Science of Synthesis, 1: Biocatalysis in Organic Synthesis 1 DOI: 10.1055/sos-SD-214-00283
Biocatalysis in Organic Synthesis 1

1.4.5 Hydrolysis of Hydantoins, Dihydropyrimidines, and Related Compounds

More Information

Book

Editors: Faber, K.; Fessner, W.-D.; Turner, N. J.

Authors: Asano, Y.; Babich, L.; Bertau, M.; Cobucci-Ponzano, B.; Díaz-Rodríguez, A.; Engel, U.; Faber, K.; Flitsch, S. L.; Glueck, S. M.; Gotor-Fernández, V.; Green, A. P.; Hall, M.; Hartog, A. F.; Hepworth, L. J.; Hollmann, F.; Jeromin, G. E.; Lauchli, R.; Lavandera, I.; Liese, A.; Martínková, L.; Moracci, M.; Pesci, L.; Rodríguez-Mata, M.; Rozzell, D.; Rudat, J.; Schmidberger, J. W.; Servi, S.; Slomka, C.; Syldatk, C.; Tasnádi, G.; Tessaro, D.; Veselá, A. B.; Voglmeir, J.; Wever, R.

Title: Biocatalysis in Organic Synthesis 1

Print ISBN: 9783131741318; Online ISBN: 9783131975218; Book DOI: 10.1055/b-003-125815

Subjects: Organic Chemistry

Science of Synthesis Reference Libraries



Parent publication

Title: Science of Synthesis

DOI: 10.1055/b-00000101

Type: Multivolume Edition

 


Abstract

Providing advantages including high chemo-, regio-, and enantioselectivity as well as mild reaction conditions, biocatalytic reaction systems are becoming increasingly important for the synthesis of chiral fine chemicals. This chapter focuses on hydantoins and related compounds as promising substrates for the synthesis of optically pure amino acids and on the enzymes involved in these processes. In particular, the production of D-amino acids, such as D-4-hydroxyphenylglycine, via the so-called “hydantoinase process” is now well established. Many investigations regarding the synthesis of L-amino acids with the help of this process have also been carried out. A further interesting application is the synthesis of β-amino acids, which are gaining importance in the pharmaceutical industry due to their special structure. Different possibilities for the application of modified hydantoinase processes are discussed, in which dihydropyrimidines serve as substrates for β-amino acid synthesis. Moreover, various methods to improve the synthesis of amino acids are described.

 
  • 4 Ogawa J, Horinouchi N, Shimizu S, Enzyme Catalysis in Organic Synthesis Drauz K, Gröger H, May O. Wiley-VCH Weinheim, Germany 2012; 1. 651–674
  • 5 Las Heras-Vázquez FJ, Clemente-Jiménez JM, Martínez-Rodríguez S, Rodríguez-Vico F, Modern Biocatalysis: Stereoselective and Environmentally Friendly Reactions Fessner W.-D, Anthonsen T. Wiley-VCH Weinheim, Germany 2009; 173
  • 18 Yokozeki K, Nakamori S, Yamanaka S, Eguchi C, Mitsugi K, Yoshinaga F. Agric. Biol. Chem. 1987; 51: 715
  • 30 Montagne C, Shipman M. Synlett 2006; 2203
  • 34 Shimizu S, Ogawa J, Stereoselective Biocatalysis Patel RN. CRC Boca Raton, FL 2000; 1–22
  • 36 Pietzsch M, Syldatk C, Enzyme Catalysis in Organic Synthesis: A Comprehensive Handbook Drauz K, Waldmann H. Wiley-VCH Weinheim, Germany 2002; 761
  • 43 Cheon Y.-H, Kim H.-S, Han K.-H, Abendroth J, Niefind K, Schomburg D, Wang J, Kim Y. Biochemistry 2002; 41: 9410
  • 44 Martin PD, Purcarea C, Zhang P, Vaishnav A, Sadecki S, Guy-Evans HI, Evans DR, Edwards BFP. J. Mol. Biol. 2005; 348: 535
  • 47 Matsuda K, Sakata S, Kaneko M, Hamajima N, Nonaka M, Sasaki M, Tamaki N. Biochim. Biophys. Acta, Gene Struct. Expression 1996; 1307: 140
  • 55 Hayashi S, Jain S, Chu R, Alvares K, Xu B, Erfurth F, Usuda N, Rao MS, Reddy SK, Noguchi T, Reddy JK, Yeldandi AV. J. Biol. Chem. 1994; 269: 12269
  • 69 Yoon J, Oh B, Kim K, Park JE, Wang J, Kim H.-S, Kim Y. Biochem. Biophys. Res. Commun. 2003; 310: 651
  • 80 Ogawa J, Soong C.-L, Ito M, Segawa T, Prana T, Prana MS, Shimizu S. Appl. Microbiol. Biotechnol. 2000; 54: 331
  • 83 Martínez-Gómez AI, Martínez-Rodríguez S, Pozo-Dengra J, Tessaro D, Servi S, Clemente-Jiménez JM, Rodríguez-Vico F, Las Heras-Vázquez FJ. Appl. Environ. Microbiol. 2009; 75: 514
  • 85 Vreken P, van Kuilenburg ABP, Hamajima N, Meinsma R, van Lenthe H, Göhlich-Ratmann G, Assmann BE, Wevers RA, van Gennip AH. Biochim. Biophys. Acta, Gene Struct. Expression 1999; 1447: 251
  • 89 Ohmachi T, Nishino M, Kawata M, Edo N, Funaki H, Narita M, Mori K, Tamura Y, Asada Y. Biosci., Biotechnol., Biochem. 2002; 66: 1097
  • 91 Ishikawa T, Mukohara Y, Watabe K, Kobayashi S, Nakamura H. Biosci., Biotechnol., Biochem. 1994; 58: 265
  • 94 Pozo-Dengra J, Martínez-Gómez AI, Martínez-Rodríguez S, Clemente-Jiménez JM, Rodríguez-Vico F, Las Heras-Vázquez FJ. Biotechnol. Prog. 2010; 26: 954
  • 95 Wilms B, Wiese A, Syldatk C, Mattes R, Altenbuchner J, Pietzsch M. J. Biotechnol. 1999; 68: 101
  • 96 Ohmachi T, Narita M, Kawata M, Bizen A, Tamura Y, Asada Y. Appl. Microbiol. Biotechnol. 2004; 65: 686
  • 97 Martínez-Rodríguez S, Martínez-Gómez AI, Rodríguez-Vico F, Clemente-Jiménez JM, Las Heras-Vázquez FJ. Appl. Microbiol. Biotechnol. 2010; 85: 441
  • 98 Martínez-Rodríguez S, García-Pino A, Heras-Vázquez FJL, Clemente-Jiménez JM, Rodríguez-Vico F, Loris R, García-Ruíz JM, Gavira JA. Acta Crystallogr., Sect. F 2008; 64: 1135
  • 101 Nakai T, Hasegawa T, Yamashita E, Yamamoto M, Kumasaka T, Ueki T, Nanba H, Ikenaka Y, Takahashi S, Sato M, Tsukihara T. Structure (Oxford, U. K.) 2000; 8: 729
  • 104 Martínez-Rodríguez S, García-Pino A, Las Heras-Vázquez FJ, Clemente-Jiménez JM, Rodríguez-Vico F, García-Ruíz JM, Loris R, Gavira JA. J. Bacteriol. 2010; 194: 5759
  • 105 Heras-Vázquez FJL, Clemente-Jiménez JM, Martínez-Rodríguez S, Rodríguez-Vico F. Recent Pat. Biotechnol. 2008; 2: 35
  • 114 Nanba H, Yamada Y, Yajima K, Takano M, Ikenaka Y, Takahashi S, Ohashi T. WO 9 600 296, 1996 Chem. Abstr.. 1996
  • 115 Martínez-Rodríguez S, Las Heras-Vázquez FJ, Clemente-Jiménez JM, Mingorance-Cazorla L, Rodríguez-Vico F. Biotechnol. Prog. 2002; 18: 1201
  • 117 Grifantini R, Galli G, Carpani G, Pratesi C, Frascotti G, Grandi G. Microbiology (Reading, U. K.) 1998; 144: 947
  • 123 Nanba H, Ikenaka Y, Yamada Y, Yajima K, Takano M, Takahashi S. Biosci., Biotechnol., Biochem. 1998; 62: 875
  • 124 Nanba H, Ikenaka Y, Yamada Y, Yajima K, Takano M, Ohkubo K, Hiraishi Y, Yamada K, Takahashi S. Biosci., Biotechnol., Biochem. 1998; 62: 1839
  • 125 Nanba H, Ikenaka Y, Yamada Y, Yajima K, Takano M, Takahashi S. J. Biosci. Bioeng. 1999; 87: 149
  • 130 Hayashi K, Nunami K, Kato J, Yoneda N, Kubo M, Ochiai T, Ishida R. J. Med. Chem. 1989; 32: 289
  • 135 Rusnak-Müller M, May O, Hermsen PJ, Straatman HMMG, Skranc W, Boesten WHJ, Heemskerk D, De Lange B. WO 2 008 067 981, 2008 Chem. Abstr.. 2008
  • 140 Altenbuchner J, Mattes R, Pietzsch M, Syldatk C, Wiese A, Wilms B. WO 9 951 722, 1999 Chem. Abstr.. 1999
  • 143 Sarakinos G, Boesten WHJ, Heemskerk D, De Lange B. WO 2 008 148 755, 2008 Chem. Abstr.. 2008
  • 145 Juaristi E, Enantioselective Synthesis of β-Amino Acids Juaristi E, Soloshonok VA. Wiley Hoboken, NJ 2005; 1–18
  • 151 Wu B, Szymanski W, Wietzes P, de Wildeman S, Poelarends GJ, Feringa BL, Janssen DB. ChemBioChem 2009; 10: 338
  • 153 Rehdorf J, Mihovilovic MD, Bornscheuer UT. Angew. Chem. 2010; 122: 4609 Angew. Chem. Int. Ed. 2010; 49: 4506
  • 160 Schneider N, Hauer B, Ditrich K, OʼNeill M, Turner N. WO 2 011 032 990, 2011 Chem. Abstr.. 2011
  • 161 Martínez-Rodríguez S, Martínez-Gómez AI, Clemente-Jiménez JM, Rodríguez-Vico F, García-Ruíz JM, Las Heras-Vázquez FJ, Gavira JA. J. Struct. Biol. 2009; 169: 200
  • 162 Martínez-Gómez AI, Clemente-Jiménez JM, Rodríguez-Vico F, Kanerva LT, Li X.-G, Las Heras-Vázquez FJ, Martínez-Rodríguez S. Process Biochem. 2012; 47: 2090
  • 170 Wagner F, Hantke B, Wagner T, Drauz K, Bommarius A. DE 19 519 717, 1996 Chem. Abstr.. 1996
  • 174 Ikenaka Y, Nanba H, Yajima K, Yamada Y, Takano M, Takahashi S. Biosci., Biotechnol., Biochem. 1998; 62: 1672
  • 175 Ikenaka Y, Nanba H, Yajima K, Yamada Y, Takano M, Takahashi S. Biosci., Biotechnol., Biochem. 1998; 62: 1668