1.6. 1 Glycosidases and Glycosynthases
Book
Editors: Faber, K.; Fessner, W.-D.; Turner, N. J.
Title: Biocatalysis in Organic Synthesis 1
Print ISBN: 9783131741318; Online ISBN: 9783131975218; Book DOI: 10.1055/b-003-125815
1st edition © 2015. Thieme. All rights reserved.
Georg Thieme Verlag KG, Stuttgart
Subjects: Organic Chemistry
Science of Synthesis Reference Libraries
Parent publication
Title: Science of Synthesis
DOI: 10.1055/b-00000101
Type: Multivolume Edition
Abstract
Enzymatic synthesis of glycans, as an alternative to classical chemical synthesis, is of great interest due to the exquisite stereospecificity and improved processivity and regioselectivity of the biological catalysts, and for the possibility of using reagents less toxic to the environment. Nonetheless, the limitations intrinsic to the natural enzymes promoting sugar synthesis, namely glycoside hydrolases and glycosyltransferases, have prompted efforts to engineer the former catalysts, obtaining glycosynthases that promote the synthesis of oligosaccharides, polysaccharides, and glycoconjugates in quantitative yields from inexpensive substrates. In this chapter we survey methods that exploit glycosidases and glycosynthases to allow the efficient and reliable preparation of glycans of synthetic relevance.
Key words
carbohydrate active enzymes - carbohydrate synthesis - enzyme engineering - glycobiology - glycochemistry - glycoconjugates - glycosidase reaction mechanism - glycosyltransferase - oligosaccharides - polysaccharides - protein glycosylation- 12 Wong C.-H, Enzyme Catalysis in Organic Synthesis Drauz K, Waldmann H. Wiley-VCH Weinheim, Germany 2002; 2. 609
- 13 Monti D, Riva S, Enzyme Catalysis in Organic Synthesis Drauz K, Gröger H, May O. Wiley-VCH Weinheim, Germany 2012; 1. 417
- 15 Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. Nucleic Acids Res. 2014; 42: D490
- 16 Thompson J, Pikis A, Ruvinov SB, Henrissat B, Yamamoto H, Sekiguchi J. J. Biol. Chem. 1998; 273: 27347
- 17 Yip VLY, Varrot A, Davies GJ, Rajan SS, Yang X.-J, Thompson J, Anderson WF, Withers SG. J. Am. Chem. Soc. 2004; 126: 8354
- 38 Jakeman DL, Withers SG, Mah M, Mayer CA, Warren RAJ, Nashito O. Abstr. Pap.–Am. Chem. Soc. 2000; 219: U134
- 53 Rodriguez-Colinas B, Poveda A, Jimenez-Barbero J, Ballesteros AO, Plou FJ. J. Agric. Food Chem. 2012; 60: 6391
- 54 Urrutia P, Rodriguez-Colinas B, Fernandez-Arrojo L, Ballesteros AO, Wilson L, Illanes A, Plou FJ. J. Agric. Food Chem. 2013; 61: 1081
- 56 Kovács Z, Benjamins E, Grau K, Ur Rehman A, Ebrahimi M, Czermak P. Adv. Biochem. Eng./Biotechnol. 2014; 143: 257
- 58 Agrawal GK, Rakwal R, Tamogami S, Yonekura M, Kubo A, Saji H. Plant Physiol. Biochem. (Issy-les-Moulineaux, Fr.) 2002; 40: 1061
- 61 Woudenberg-van Oosterom M, van Belle HJA, van Rantwijk F, Sheldon RA. J. Mol. Catal. A: Chem. 1998; 134: 267
- 72 Slámová K, Marhol P, Bezouška K, Lindkvist L, Hansen SG, Křen V, Jensen HH. Bioorg. Med. Chem. Lett. 2010; 20: 4263
- 73 Cobucci-Ponzano B, Conte F, Bedini E, Corsaro MM, Parrilli M, Sulzenbacher G, Lipski A, Dal Piaz F, Lepore L, Rossi M, Moracci M. Chem. Biol. 2009; 16: 1097
- 74 Cobucci-Ponzano B, Zorzetti C, Strazzulli A, Carillo S, Bedini E, Corsaro MM, Comfort DA, Kelly RM, Rossi M, Moracci M. Glycobiology 2011; 21: 448
- 75 Varki A, Cummings R, Esko J, Freeze H, Hart G, Marth J. Essentials of Glycobiology. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, NY 1999